School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.
J Cell Mol Med. 2018 Mar;22(3):1548-1561. doi: 10.1111/jcmm.13429. Epub 2017 Dec 22.
MicroRNAs (miRNAs) have been confirmed to be closely related to various human complex diseases by many experimental studies. It is necessary and valuable to develop powerful and effective computational models to predict potential associations between miRNAs and diseases. In this work, we presented a prediction model of Graphlet Interaction for MiRNA-Disease Association prediction (GIMDA) by integrating the disease semantic similarity, miRNA functional similarity, Gaussian interaction profile kernel similarity and the experimentally confirmed miRNA-disease associations. The related score of a miRNA to a disease was calculated by measuring the graphlet interactions between two miRNAs or two diseases. The novelty of GIMDA lies in that we used graphlet interaction to analyse the complex relationships between two nodes in a graph. The AUCs of GIMDA in global and local leave-one-out cross-validation (LOOCV) turned out to be 0.9006 and 0.8455, respectively. The average result of five-fold cross-validation reached to 0.8927 ± 0.0012. In case study for colon neoplasms, kidney neoplasms and prostate neoplasms based on the database of HMDD V2.0, 45, 45, 41 of the top 50 potential miRNAs predicted by GIMDA were validated by dbDEMC and miR2Disease. Additionally, in the case study of new diseases without any known associated miRNAs and the case study of predicting potential miRNA-disease associations using HMDD V1.0, there were also high percentages of top 50 miRNAs verified by the experimental literatures.
微小 RNA(miRNA)已被大量的实验研究证实与各种人类复杂疾病密切相关。因此,开发强大而有效的计算模型来预测 miRNA 与疾病之间的潜在关联是非常必要和有价值的。在这项工作中,我们通过整合疾病语义相似性、miRNA 功能相似性、高斯相互作用谱核相似性和已证实的 miRNA-疾病关联,提出了一种用于 miRNA-疾病关联预测的图元交互预测模型(GIMDA)。通过测量两个 miRNA 或两个疾病之间的图元相互作用,计算 miRNA 与疾病的相关得分。GIMDA 的新颖之处在于,我们使用图元交互来分析图中两个节点之间的复杂关系。GIMDA 在全局和局部留一法交叉验证(LOOCV)中的 AUC 值分别为 0.9006 和 0.8455,五次交叉验证的平均结果达到 0.8927±0.0012。在基于 HMDD V2.0 数据库的结肠癌、肾癌和前列腺癌的案例研究中,GIMDA 预测的前 50 个潜在 miRNA 中有 45、45、41 个被 dbDEMC 和 miR2Disease 验证。此外,在没有任何已知相关 miRNA 的新疾病案例研究和使用 HMDD V1.0 预测潜在 miRNA-疾病关联的案例研究中,也有很高比例的前 50 个 miRNA 被实验文献验证。
J Cell Mol Med. 2017-12-22
BMC Bioinformatics. 2019-12-3
Cell Death Dis. 2018-1-5
PLoS Comput Biol. 2018-8-24
Oncotarget. 2017-3-28
Bioinformatics. 2018-12-15
PLoS Comput Biol. 2017-3-24
Curr Protein Pept Sci. 2020
World J Surg Oncol. 2021-8-11
BMC Med Inform Decis Mak. 2021-4-20
Genome Biol. 2019-10-8
Mol Ther Nucleic Acids. 2019-9-6
Clin Lymphoma Myeloma Leuk. 2017-7
RNA Biol. 2017-7-3
Genomics Proteomics Bioinformatics. 2017-4
BMC Bioinformatics. 2017-3-14
CA Cancer J Clin. 2017-3-1
Oncotarget. 2017-3-28
Bioinformatics. 2017-2-1
CA Cancer J Clin. 2017-1-5
Nature. 2016-9-15
Oncotarget. 2016-10-4