文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GIMDA:基于图元交互的 miRNA-疾病关联预测。

GIMDA: Graphlet interaction-based MiRNA-disease association prediction.

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.

出版信息

J Cell Mol Med. 2018 Mar;22(3):1548-1561. doi: 10.1111/jcmm.13429. Epub 2017 Dec 22.


DOI:10.1111/jcmm.13429
PMID:29272076
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5824414/
Abstract

MicroRNAs (miRNAs) have been confirmed to be closely related to various human complex diseases by many experimental studies. It is necessary and valuable to develop powerful and effective computational models to predict potential associations between miRNAs and diseases. In this work, we presented a prediction model of Graphlet Interaction for MiRNA-Disease Association prediction (GIMDA) by integrating the disease semantic similarity, miRNA functional similarity, Gaussian interaction profile kernel similarity and the experimentally confirmed miRNA-disease associations. The related score of a miRNA to a disease was calculated by measuring the graphlet interactions between two miRNAs or two diseases. The novelty of GIMDA lies in that we used graphlet interaction to analyse the complex relationships between two nodes in a graph. The AUCs of GIMDA in global and local leave-one-out cross-validation (LOOCV) turned out to be 0.9006 and 0.8455, respectively. The average result of five-fold cross-validation reached to 0.8927 ± 0.0012. In case study for colon neoplasms, kidney neoplasms and prostate neoplasms based on the database of HMDD V2.0, 45, 45, 41 of the top 50 potential miRNAs predicted by GIMDA were validated by dbDEMC and miR2Disease. Additionally, in the case study of new diseases without any known associated miRNAs and the case study of predicting potential miRNA-disease associations using HMDD V1.0, there were also high percentages of top 50 miRNAs verified by the experimental literatures.

摘要

微小 RNA(miRNA)已被大量的实验研究证实与各种人类复杂疾病密切相关。因此,开发强大而有效的计算模型来预测 miRNA 与疾病之间的潜在关联是非常必要和有价值的。在这项工作中,我们通过整合疾病语义相似性、miRNA 功能相似性、高斯相互作用谱核相似性和已证实的 miRNA-疾病关联,提出了一种用于 miRNA-疾病关联预测的图元交互预测模型(GIMDA)。通过测量两个 miRNA 或两个疾病之间的图元相互作用,计算 miRNA 与疾病的相关得分。GIMDA 的新颖之处在于,我们使用图元交互来分析图中两个节点之间的复杂关系。GIMDA 在全局和局部留一法交叉验证(LOOCV)中的 AUC 值分别为 0.9006 和 0.8455,五次交叉验证的平均结果达到 0.8927±0.0012。在基于 HMDD V2.0 数据库的结肠癌、肾癌和前列腺癌的案例研究中,GIMDA 预测的前 50 个潜在 miRNA 中有 45、45、41 个被 dbDEMC 和 miR2Disease 验证。此外,在没有任何已知相关 miRNA 的新疾病案例研究和使用 HMDD V1.0 预测潜在 miRNA-疾病关联的案例研究中,也有很高比例的前 50 个 miRNA 被实验文献验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d6/5824414/40e9b5546cfe/JCMM-22-1548-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d6/5824414/95334ac317bb/JCMM-22-1548-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d6/5824414/5b58da2c2bdb/JCMM-22-1548-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d6/5824414/40e9b5546cfe/JCMM-22-1548-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d6/5824414/95334ac317bb/JCMM-22-1548-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d6/5824414/5b58da2c2bdb/JCMM-22-1548-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d6/5824414/40e9b5546cfe/JCMM-22-1548-g003.jpg

相似文献

[1]
GIMDA: Graphlet interaction-based MiRNA-disease association prediction.

J Cell Mol Med. 2017-12-22

[2]
An improved random forest-based computational model for predicting novel miRNA-disease associations.

BMC Bioinformatics. 2019-12-3

[3]
EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.

Cell Death Dis. 2018-1-5

[4]
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.

PLoS Comput Biol. 2018-8-24

[5]
Dual Laplacian regularized matrix completion for microRNA-disease associations prediction.

RNA Biol. 2019-2-20

[6]
MCMDA: Matrix completion for MiRNA-disease association prediction.

Oncotarget. 2017-3-28

[7]
Predicting miRNA-disease association based on inductive matrix completion.

Bioinformatics. 2018-12-15

[8]
PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.

PLoS Comput Biol. 2017-3-24

[9]
A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction.

Mol Biosyst. 2017-5-30

[10]
Review of MiRNA-Disease Association Prediction.

Curr Protein Pept Sci. 2020

引用本文的文献

[1]
A novel information diffusion method based on network consistency for identifying disease related microRNAs.

RSC Adv. 2018-10-30

[2]
Inferring miRNA-disease associations using collaborative filtering and resource allocation on a tripartite graph.

BMC Med Genomics. 2021-11-17

[3]
Expression levels and clinical values of miR-92b-3p in breast cancer.

World J Surg Oncol. 2021-8-11

[4]
RSCMDA: Prediction of Potential miRNA-Disease Associations Based on a Robust Similarity Constraint Learning Method.

Interdiscip Sci. 2021-12

[5]
MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features.

BMC Med Inform Decis Mak. 2021-4-20

[6]
MSFSP: A Novel miRNA-Disease Association Prediction Model by Federating Multiple-Similarities Fusion and Space Projection.

Front Genet. 2020-4-30

[7]
BHCMDA: A New Biased Heat Conduction Based Method for Potential MiRNA-Disease Association Prediction.

Front Genet. 2020-4-28

[8]
Benchmark of computational methods for predicting microRNA-disease associations.

Genome Biol. 2019-10-8

[9]
Self-Weighted Multi-Kernel Multi-Label Learning for Potential miRNA-Disease Association Prediction.

Mol Ther Nucleic Acids. 2019-9-6

[10]
Bipartite Heterogeneous Network Method Based on Co-neighbor for MiRNA-Disease Association Prediction.

Front Genet. 2019-4-26

本文引用的文献

[1]
Expression of Peripheral Blood miRNA-720 and miRNA-1246 Can Be Used as a Predictor for Outcome in Multiple Myeloma Patients.

Clin Lymphoma Myeloma Leuk. 2017-7

[2]
RKNNMDA: Ranking-based KNN for MiRNA-Disease Association prediction.

RNA Biol. 2017-7-3

[3]
Network Analysis Reveals A Signaling Regulatory Loop in the PIK3CA-mutated Breast Cancer Predicting Survival Outcome.

Genomics Proteomics Bioinformatics. 2017-4

[4]
MicroRNA categorization using sequence motifs and k-mers.

BMC Bioinformatics. 2017-3-14

[5]
Colorectal cancer statistics, 2017.

CA Cancer J Clin. 2017-3-1

[6]
MCMDA: Matrix completion for MiRNA-disease association prediction.

Oncotarget. 2017-3-28

[7]
LDAP: a web server for lncRNA-disease association prediction.

Bioinformatics. 2017-2-1

[8]
Cancer Statistics, 2017.

CA Cancer J Clin. 2017-1-5

[9]
Kidney cancer.

Nature. 2016-9-15

[10]
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction.

Oncotarget. 2016-10-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索