Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich , Tannenstrasse 3, Zürich CH-8092, Switzerland.
ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2442-2450. doi: 10.1021/acsami.7b14643. Epub 2018 Jan 8.
Capacitive deionization (CDI) features a low-cost and energy-efficient desalination approach based on electrosorption of saline ions. To enhance the salt electrosorption capacity of CDI electrodes, we coat ion-selective pseudocapacitive layers (MnO and Ag) onto porous carbon electrodes (activated carbon cloth) with only minimal use of a conductive additive and a polymer binder (<1 wt % in total). Optimized pseudocapacitive electrodes result in excellent single-electrode specific capacitance (>300 F/g) and great cell stability (70% retention after 500 cycles). A CDI cell out of these pseudocapacitive electrodes yields as high charge efficiency as 83% and a remarkable salt adsorption capacity up to 17.8 mg/g. Our finding of outstanding CDI performance of the pseudocapacitive electrodes with no use of costly ion-exchange membranes highlights the significant role of a pseudocapacitive layer in the electrosorption process.
电容去离子 (CDI) 是一种基于盐水离子电吸附的低成本、节能型海水淡化方法。为了提高 CDI 电极的盐电吸附容量,我们在多孔碳电极(活性炭布)上涂覆离子选择性赝电容层(MnO 和 Ag),仅使用最小量的导电添加剂和聚合物粘结剂(<1wt%)。优化后的赝电容电极具有出色的单电极比电容(>300 F/g)和良好的电池稳定性(500 次循环后保留率为 70%)。由这些赝电容电极组成的 CDI 电池的充电效率高达 83%,盐吸附容量高达 17.8mg/g。我们发现,在不使用昂贵的离子交换膜的情况下,赝电容电极具有出色的 CDI 性能,这突出表明赝电容层在电吸附过程中起着重要作用。