Chen Po-An, Liu Shou-Heng, Wang H Paul
Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
ACS Omega. 2023 Mar 28;8(14):13315-13322. doi: 10.1021/acsomega.3c00673. eCollection 2023 Apr 11.
Capacitive deionization (CDI), a m ethod with notable advantages of relatively low energy consumption and environmental friendliness, has been widely used in desalination of saltwater. However, due to the weak electrical double-layer electrosorption of ions from water, CDI has suffered from low throughput capacity that may limit its commercial applications. Thus, it is of importance to develop a high-efficiency and engineering-feasible CDI process. Manganese and cobalt and their oxides, being faradic materials, have a relatively high pseudocapacitance, which can cause an increase of positive and negative charges on opposing electrodes. However, their low conductivity properties limit their electrochemical applications. Pseudocapacitive MnO nanoparticles encapsulated within a conducting carbon shell (MnO@C) were prepared to enhance charge transfer and capacitance for CDI. Desalination performances of the MnO@C (5-15 wt %) core-shell nanoparticles on activated carbon (AC) (MnO@C/AC) serving as CDI electrodes have thus been investigated. The pseudocapacitive MnO@C/AC electrodes with relatively low diffusion resistances have much greater capacitance (240-1300 F/g) than the pristine AC electrode (120 F/g). synchrotron X-ray absorption near-edge structure spectra of the MnO@C/AC electrodes during CDI (under 1.2 and -1.2 V for electrosorption and regeneration, respectively) demonstrate that reversible faradic redox reactions cause more negative charges on the negative electrode and more positive charges on the positive electrode. Consequently, the pseudocapacitive electrodes for CDI of saltwater ([NaCl] = 1000 ppm) show much better desalination performances with a high optimized salt removal (600 mg/g·day), electrosorption efficiency (48%), and electrosorption capacity (EC) (25 mg/g) than the AC electrodes (288 mg/g·day, 23%, and 12 mg/g, respectively). The MnO@C/AC electrode has a maximum EC of 29 mg/g for CDI under +1.2 V. Also, the MnO@C/AC electrodes have much higher pseudocapacitive electrosorption rate constants (0.0049-0.0087 h) than the AC electrode (0.0016 h). This work demonstrates the feasibility of high-efficiency CDI of saltwater for water recycling and reuse using the low-cost and easily fabricated pseudocapacitive MnO@C/AC electrodes.
电容去离子化(CDI)是一种具有能耗相对较低和环境友好等显著优点的方法,已广泛应用于海水淡化。然而,由于从水中离子的电双层电吸附较弱,CDI存在通量低的问题,这可能会限制其商业应用。因此,开发一种高效且工程可行的CDI工艺具有重要意义。锰和钴及其氧化物作为法拉第材料,具有相对较高的赝电容,这会导致在相对电极上正负电荷增加。然而,它们的低导电性能限制了其电化学应用。制备了包裹在导电碳壳内的赝电容MnO纳米颗粒(MnO@C),以增强电荷转移和CDI的电容。因此,研究了MnO@C(5 - 15 wt%)核壳纳米颗粒在作为CDI电极的活性炭(AC)上的脱盐性能。具有相对较低扩散电阻的赝电容MnO@C/AC电极比原始AC电极(120 F/g)具有大得多的电容(240 - 1300 F/g)。CDI过程中MnO@C/AC电极的同步加速器X射线吸收近边结构光谱(分别在1.2 V和 - 1.2 V下进行电吸附和再生)表明,可逆的法拉第氧化还原反应在负极上产生更多负电荷,在正极上产生更多正电荷。因此,用于盐水([NaCl] = 1000 ppm)CDI的赝电容电极表现出比AC电极(分别为288 mg/g·天、23%和12 mg/g)更好的脱盐性能,具有高优化的脱盐率(600 mg/g·天)、电吸附效率(48%)和电吸附容量(EC)(25 mg/g)。MnO@C/AC电极在 +1.2 V下CDI的最大EC为29 mg/g。此外,MnO@C/AC电极比AC电极(0.0016 h)具有高得多的赝电容电吸附速率常数(0.0049 - 0.0087 h)。这项工作证明了使用低成本且易于制造的赝电容MnO@C/AC电极进行高效盐水CDI以实现水的循环和再利用的可行性。