Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA.
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
J Chem Phys. 2017 Dec 21;147(23):231102. doi: 10.1063/1.5016165.
Virial coefficients are predicted over a large range of both temperatures and model parameter values (i.e., alchemical transformation) from an individual Mayer-sampling Monte Carlo simulation by statistical mechanical extrapolation with minimal increase in computational cost. With this extrapolation method, a Mayer-sampling Monte Carlo simulation of the SPC/E (extended simple point charge) water model quantitatively predicted the second virial coefficient as a continuous function spanning over four orders of magnitude in value and over three orders of magnitude in temperature with less than a 2% deviation. In addition, the same simulation predicted the second virial coefficient if the site charges were scaled by a constant factor, from an increase of 40% down to zero charge. This method is also shown to perform well for the third virial coefficient and the exponential parameter for a Lennard-Jones fluid.
通过统计力学外推,从单个 Mayer 采样蒙特卡罗模拟中,在计算成本增加最小的情况下,预测了大范围的温度和模型参数值(即化学转变)下的 Virial 系数。通过这种外推方法,对 SPC/E(扩展简单点电荷)水模型的 Mayer 采样蒙特卡罗模拟定量预测了第二 Virial 系数,该系数是跨越四个数量级的数值和三个数量级的温度的连续函数,偏差小于 2%。此外,如果将站点电荷按常数因子缩放,该模拟还可以预测第二 Virial 系数,从增加 40%到零电荷。该方法还可用于 Lennard-Jones 流体的第三 Virial 系数和指数参数,效果良好。