Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA.
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, USA.
J Chem Phys. 2017 Feb 21;146(7):074101. doi: 10.1063/1.4975331.
We present a method for predicting the free energy landscape of fluids at low temperatures from flat-histogram grand canonical Monte Carlo simulations performed at higher ones. We illustrate our approach for both pure and multicomponent systems using two different sampling methods as a demonstration. This allows us to predict the thermodynamic behavior of systems which undergo both first order and continuous phase transitions upon cooling using simulations performed only at higher temperatures. After surveying a variety of different systems, we identify a range of temperature differences over which the extrapolation of high temperature simulations tends to quantitatively predict the thermodynamic properties of fluids at lower ones. Beyond this range, extrapolation still provides a reasonably well-informed estimate of the free energy landscape; this prediction then requires less computational effort to refine with an additional simulation at the desired temperature than reconstruction of the surface without any initial estimate. In either case, this method significantly increases the computational efficiency of these flat-histogram methods when investigating thermodynamic properties of fluids over a wide range of temperatures. For example, we demonstrate how a binary fluid phase diagram may be quantitatively predicted for many temperatures using only information obtained from a single supercritical state.
我们提出了一种从在较高温度下进行的具有平坦直方图的正则系综蒙特卡罗模拟中预测低温下流体自由能景观的方法。我们使用两种不同的采样方法对纯物质和多组分系统进行了说明,以进行演示。这使得我们可以仅使用较高温度下的模拟来预测在冷却过程中经历一级和连续相变的系统的热力学行为。在调查了多种不同的系统之后,我们确定了在一定温度范围内,高温模拟的外推倾向于定量预测较低温度下流体的热力学性质。超出此范围,外推仍然可以很好地估计自由能景观;与没有任何初始估计的表面重建相比,在所需温度下仅通过额外模拟进行细化的预测需要更少的计算工作量。在这两种情况下,当在较宽的温度范围内研究流体的热力学性质时,这种方法都大大提高了这些平坦直方图方法的计算效率。例如,我们展示了如何仅使用从单个超临界状态获得的信息来定量预测许多温度下的二元流体相图。