Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
Phys Rev E. 2023 Feb;107(2-1):024129. doi: 10.1103/PhysRevE.107.024129.
We calculated virial coefficients up to the eighth order for hard dumbbells in two-, three-, and four-dimensional Euclidean spaces employing Mayer-sampling Monte Carlo simulations. We improved and extended available data in two dimensions, provide virial coefficients in R^{4} in dependence on their aspect ratio, and recalculated virial coefficients for three-dimensional dumbbells. Highly accurate, semianalytical values for the second virial coefficient of homonuclear, four-dimensional dumbbells are provided. We compare the influence of the aspect ratio and the dimensionality to the virial series for this concave geometry. Lower-order reduced virial coefficients B[over ̃]{i}=B{i}/B_{2}^{i-1} depend in first approximation linearly from the inverse excess part of their mutual excluded volume.
我们使用 Mayer 采样蒙特卡罗模拟计算了二维、三维和四维欧几里得空间中硬哑铃的到第八阶的维里系数。我们改进和扩展了二维空间中的可用数据,给出了 R^{4}中哑铃的维里系数与其纵横比的关系,并重新计算了三维哑铃的维里系数。我们为同核、四维哑铃的第二维里系数提供了高度精确的半解析值。我们比较了这种凹面几何形状的纵横比和维度对维里级数的影响。低阶约化维里系数 B[over ̃]{i}=B{i}/B_{2}^{i-1} 近似线性地依赖于它们相互排斥体积的过剩部分的倒数。