蛋白质构象灵活性调节药物结合的动力学和热力学。
Protein conformational flexibility modulates kinetics and thermodynamics of drug binding.
机构信息
iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, 2780-157, Portugal.
Molecular Interactions and Biophysics, Merck KGaA, Darmstadt, 64293, Germany.
出版信息
Nat Commun. 2017 Dec 22;8(1):2276. doi: 10.1038/s41467-017-02258-w.
Structure-based drug design has often been restricted by the rather static picture of protein-ligand complexes presented by crystal structures, despite the widely accepted importance of protein flexibility in biomolecular recognition. Here we report a detailed experimental and computational study of the drug target, human heat shock protein 90, to explore the contribution of protein dynamics to the binding thermodynamics and kinetics of drug-like compounds. We observe that their binding properties depend on whether the protein has a loop or a helical conformation in the binding site of the ligand-bound state. Compounds bound to the helical conformation display slow association and dissociation rates, high-affinity and high cellular efficacy, and predominantly entropically driven binding. An important entropic contribution comes from the greater flexibility of the helical relative to the loop conformation in the ligand-bound state. This unusual mechanism suggests increasing target flexibility in the bound state by ligand design as a new strategy for drug discovery.
基于结构的药物设计常常受到晶体结构所呈现的相当静态的蛋白质-配体复合物图像的限制,尽管蛋白质柔性在生物分子识别中被广泛认可。在这里,我们报告了对药物靶点人热休克蛋白 90 的详细实验和计算研究,以探索蛋白质动力学对类药物化合物结合热力学和动力学的贡献。我们观察到,它们的结合特性取决于蛋白质在配体结合状态下的结合部位是具有环或螺旋构象。与螺旋构象结合的化合物表现出缓慢的缔合和解离速率、高亲和力和高细胞功效,以及主要由熵驱动的结合。一个重要的熵贡献来自于配体结合状态下螺旋相对于环构象的更大灵活性。这种不寻常的机制表明,通过配体设计增加靶标在结合状态下的灵活性是一种新的药物发现策略。