Institut für Pharmazeutische Chemie , Philipps-Universität Marburg , Marbacher Weg 6 , 35032 Marburg , Germany.
Institut für Organische Chemie und Chemische Biologie , Johann Wolfgang Goethe-Universität Frankfurt , Max-von-Laue-Straße 7, N160-3.14 , 60438 Frankfurt am Main , Germany.
J Med Chem. 2018 Jul 26;61(14):5922-5933. doi: 10.1021/acs.jmedchem.8b00105. Epub 2018 Jul 3.
Biophysical parameters can accelerate drug development; e.g., rigid ligands may reduce entropic penalty and improve binding affinity. We studied systematically the impact of ligand rigidification on thermodynamics using a series of fasudil derivatives inhibiting protein kinase A by crystallography, isothermal titration calorimetry, nuclear magnetic resonance, and molecular dynamics simulations. The ligands varied in their internal degrees of freedom but conserve the number of heteroatoms. Counterintuitively, the most flexible ligand displays the entropically most favored binding. As experiment shows, this cannot be explained by higher residual flexibility of ligand, protein, or formed complex nor by a deviating or increased release of water molecules upon complex formation. NMR and crystal structures show no differences in flexibility and water release, although strong ligand-induced adaptations are observed. Instead, the flexible ligand entraps more efficiently water molecules in solution prior to protein binding, and by release of these waters, the favored entropic binding is observed.
生物物理参数可以加速药物研发;例如,刚性配体可以降低熵罚并提高结合亲和力。我们通过晶体学、等温滴定量热法、核磁共振和分子动力学模拟,系统地研究了配体刚性化对热力学的影响。这些配体在内部自由度上有所不同,但保持杂原子的数量不变。出人意料的是,最灵活的配体显示出熵最有利的结合。实验表明,这不能用配体、蛋白质或形成的复合物的更高残余灵活性,或复合物形成时水分子的偏离或增加释放来解释。尽管观察到强烈的配体诱导适应,但 NMR 和晶体结构显示在灵活性和水释放方面没有差异。相反,在与蛋白质结合之前,柔性配体更有效地在溶液中捕获水分子,并通过释放这些水,观察到有利的熵结合。