School of Chemistry, University of Bristol , Cantock's Close, Bristol, BS8 1TS, U.K.
School of Biochemistry, University of Bristol , Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, U.K.
ACS Nano. 2018 Feb 27;12(2):1420-1432. doi: 10.1021/acsnano.7b07785. Epub 2018 Jan 22.
Understanding how molecules in self-assembled soft-matter nanostructures are organized is essential for improving the design of next-generation nanomaterials. Imaging these assemblies can be challenging and usually requires processing, e.g., staining or embedding, which can damage or obscure features. An alternative is to use bioinspired mineralization, mimicking how certain organisms use biomolecules to template mineral formation. Previously, we have reported the design and characterization of Self-Assembled peptide caGEs (SAGEs) formed from de novo peptide building blocks. In SAGEs, two complementary, 3-fold symmetric, peptide hubs combine to form a hexagonal lattice, which curves and closes to form SAGE nanoparticles. As hexagons alone cannot tile onto spheres, the network must also incorporate nonhexagonal shapes. While the hexagonal ultrastructure of the SAGEs has been imaged, these defects have not been observed. Here, we show that positively charged SAGEs biotemplate a thin, protective silica coating. Electron microscopy shows that these SiO-SAGEs do not collapse, but maintain their 3D shape when dried. Atomic force microscopy reveals a network of hexagonal and irregular features on the SiO-SAGE surface. The dimensions of these (7.2 nm ± 1.4 nm across, internal angles 119.8° ± 26.1°) are in accord with the designed SAGE network and with coarse-grained modeling of the SAGE assembly. The SiO-SAGEs are permeable to small molecules (<2 nm), but not to larger biomolecules (>6 nm). Thus, bioinspired silicification offers a mild technique that preserves soft-matter nanoparticles for imaging, revealing structural details <10 nm in size, while also maintaining desirable properties, such as permeability to small molecules.
了解自组装软物质纳米结构中的分子如何排列对于改进下一代纳米材料的设计至关重要。对这些组装体进行成像可能具有挑战性,通常需要进行处理,例如染色或嵌入,这可能会损坏或掩盖特征。另一种方法是使用受生物启发的矿化作用,模拟某些生物体如何使用生物分子来模板矿物质形成。以前,我们已经报道了由从头肽构建块组成的自组装肽 caGE(SAGE)的设计和特性。在 SAGE 中,两个互补的、三进制对称的肽中心结合在一起形成六边形晶格,晶格弯曲并闭合形成 SAGE 纳米颗粒。由于六边形本身不能平铺在球体上,因此网络还必须包含非六边形形状。尽管已经对 SAGE 的六边形超结构进行了成像,但这些缺陷尚未被观察到。在这里,我们表明带正电荷的 SAGE 生物模板化形成了一层薄的保护性二氧化硅涂层。电子显微镜显示,这些 SiO-SAGE 在干燥时不会坍塌,而是保持其 3D 形状。原子力显微镜揭示了 SiO-SAGE 表面上存在六边形和不规则特征的网络。这些特征的尺寸(直径为 7.2nm ± 1.4nm,内角为 119.8° ± 26.1°)与设计的 SAGE 网络以及 SAGE 组装的粗粒化模型一致。SiO-SAGE 对小分子(<2nm)是可渗透的,但对较大的生物分子(>6nm)则不可渗透。因此,受生物启发的硅化提供了一种温和的技术,可以在不损害小分子渗透性等理想性质的情况下,对软物质纳米颗粒进行成像,揭示<10nm 大小的结构细节。