School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom.
GlaxoSmithKline (GSK) , Gunnels Wood Rd, Stevenage SG21 2NY, United Kingdom.
ACS Nano. 2017 Aug 22;11(8):7901-7914. doi: 10.1021/acsnano.7b02368. Epub 2017 Jul 11.
An ability to organize and encapsulate multiple active proteins into defined objects and spaces at the nanoscale has potential applications in biotechnology, nanotechnology, and synthetic biology. Previously, we have described the design, assembly, and characterization of peptide-based self-assembled cages (SAGEs). These ≈100 nm particles comprise thousands of copies of de novo designed peptide-based hubs that array into a hexagonal network and close to give caged structures. Here, we show that, when fused to the designed peptides, various natural proteins can be co-assembled into SAGE particles. We call these constructs pSAGE for protein-SAGE. These particles tolerate the incorporation of multiple copies of folded proteins fused to either the N or the C termini of the hubs, which modeling indicates form the external and internal surfaces of the particles, respectively. Up to 15% of the hubs can be functionalized without compromising the integrity of the pSAGEs. This corresponds to hundreds of copies giving mM local concentrations of protein in the particles. Moreover, and illustrating the modularity of the SAGE system, we show that multiple different proteins can be assembled simultaneously into the same particle. As the peptide-protein fusions are made via recombinant expression of synthetic genes, we envisage that pSAGE systems could be developed modularly to actively encapsulate or to present a wide variety of functional proteins, allowing them to be developed as nanoreactors through the immobilization of enzyme cascades or as vehicles for presenting whole antigenic proteins as synthetic vaccine platforms.
能够将多种活性蛋白质组织并封装到纳米尺度的定义对象和空间中,在生物技术、纳米技术和合成生物学中有潜在的应用。以前,我们已经描述了基于肽的自组装笼(SAGE)的设计、组装和表征。这些 ≈100nm 的颗粒包含数千个从头设计的基于肽的接头的副本,这些接头排列成六边形网络并紧密排列形成笼状结构。在这里,我们表明,当与设计的肽融合时,各种天然蛋白质可以共同组装成 SAGE 颗粒。我们将这些构建体称为 pSAGE(蛋白质-SAGE)。这些颗粒可以容忍融合到接头的 N 或 C 末端的折叠蛋白的多个拷贝的掺入,模型表明这些蛋白分别形成颗粒的外部和内部表面。多达 15%的接头可以被功能化而不会破坏 pSAGE 的完整性。这对应于数百个拷贝,在颗粒中提供 mM 局部浓度的蛋白质。此外,展示了 SAGE 系统的模块化,我们表明可以同时将多种不同的蛋白质组装到同一个颗粒中。由于肽-蛋白融合是通过重组表达合成基因来实现的,我们设想可以模块化地开发 pSAGE 系统,以主动封装或呈现各种功能蛋白,通过固定酶级联或作为作为合成疫苗平台呈现整个抗原性蛋白质的载体,将它们开发为纳米反应器。