Sorbonne Universités, UPMC Univ. Paris 06, CNRS FRE3631, Institut de Biologie Paris Seine (IBPS), 7 Quai St. Bernard, Paris 75005, France; CNRS UMR7622, Developmental Biology Lab, 7 Quai St. Bernard, 75005 Paris, France.
Sorbonne Universités, UPMC Univ. Paris 06, CNRS FRE3631, Institut de Biologie Paris Seine (IBPS), 7 Quai St. Bernard, Paris 75005, France; CNRS FRE3631, IBPS Imaging Facility, 7 Quai St. Bernard, 75005 Paris, France.
Curr Biol. 2018 Jan 8;28(1):130-139.e3. doi: 10.1016/j.cub.2017.11.049. Epub 2017 Dec 21.
Cell division with partitioning of the genetic material should take place only when paired chromosomes named bivalents (meiosis I) or sister chromatids (mitosis and meiosis II) are correctly attached to the bipolar spindle in a tension-generating manner. For this to happen, the spindle assembly checkpoint (SAC) checks whether unattached kinetochores are present, in which case anaphase onset is delayed to permit further establishment of attachments. Additionally, microtubules are stabilized when they are attached and under tension. In mitosis, attachments not under tension activate the so-named error correction pathway depending on Aurora B kinase substrate phosphorylation. This leads to microtubule detachments, which in turn activates the SAC [1-3]. Meiotic divisions in mammalian oocytes are highly error prone, with severe consequences for fertility and health of the offspring [4, 5]. Correct attachment of chromosomes in meiosis I leads to the generation of stretched bivalents, but-unlike mitosis-not to tension between sister kinetochores, which co-orient. Here, we set out to address whether reduction of tension applied by the spindle on bioriented bivalents activates error correction and, as a consequence, the SAC. Treatment of oocytes in late prometaphase I with Eg5 kinesin inhibitor affects spindle tension, but not attachments, as we show here using an optimized protocol for confocal imaging. After Eg5 inhibition, bivalents are correctly aligned but less stretched, and as a result, Aurora-B/C-dependent error correction with microtubule detachment takes place. This loss of attachments leads to SAC activation. Crucially, SAC activation itself does not require Aurora B/C kinase activity in oocytes.
细胞分裂时遗传物质的分配只有在配对染色体(减数分裂 I)或姐妹染色单体(有丝分裂和减数分裂 II)以产生张力的方式正确连接到双极纺锤体时才会发生。为了实现这一点,纺锤体装配检查点(SAC)会检查是否存在未连接的动粒,如果存在,则会延迟后期开始,以允许进一步建立连接。此外,当微管与纺锤体连接并受到张力时,它们会变得稳定。在有丝分裂中,未受张力的连接会激活所谓的错误修正途径,这取决于 Aurora B 激酶底物的磷酸化。这会导致微管脱离,进而激活 SAC [1-3]。哺乳动物卵母细胞的减数分裂非常容易出错,这对生育能力和后代的健康都有严重的影响 [4,5]。减数分裂 I 中染色体的正确连接会导致拉长的二价体的产生,但与有丝分裂不同的是,姐妹动粒之间没有张力,它们会共同定向。在这里,我们着手研究纺锤体施加在双定向二价体上的张力减少是否会激活错误修正,从而激活 SAC。我们在这里使用优化的共聚焦成像方案表明,在晚期早中期 I 的卵母细胞中用 Eg5 驱动蛋白抑制剂处理会影响纺锤体张力,但不会影响连接。在 Eg5 抑制后,二价体正确对齐但拉伸程度较小,因此会发生依赖 Aurora-B/C 的错误修正和微管脱离。这种连接的丢失会导致 SAC 激活。至关重要的是,SAC 的激活本身并不需要卵母细胞中的 Aurora B/C 激酶活性。