Dudka Damian, Dawicki-McKenna Jennine M, Sun Xueqi, Beeravolu Keagan, Akera Takashi, Lampson Michael A, Black Ben E
Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Nature. 2025 Feb;638(8051):814-822. doi: 10.1038/s41586-024-08374-0. Epub 2025 Jan 8.
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1). Pericentromeric heterochromatin in two closely related mouse species, M. musculus and M. spretus, forms on divergent satellites that differ by both density of narrow DNA minor grooves and HMGA1 recruitment. HMGA1 binds preferentially to M. musculus satellites, and depletion in M. musculus oocytes causes massive stretching of pericentromeric satellites, disruption of kinetochore organization and delays in bipolar spindle assembly. In M. musculus × spretus hybrid oocytes, HMGA1 depletion disproportionately impairs M. musculus pericentromeres and microtubule attachment to their kinetochores. Thus, DNA shape affects both pericentromere packaging and the segregation machinery. We propose that rapid evolution of centromere and pericentromere DNA does not disrupt these essential processes when the satellites adopt DNA shapes recognized by conserved architectural proteins (such as HMGA1). By packaging these satellites, architectural proteins become part of the centromeric and pericentromeric chromatin, suggesting an evolutionary strategy that lowers the cost of megabase-scale satellite expansion.
尽管着丝粒指导染色体遗传的过程高度保守且至关重要,但着丝粒及其周围卫星DNA的丰度和序列仍在迅速演变。这种快速演变的影响尚不清楚。在此,我们发现序列依赖性DNA形状通过一种保守的识别DNA形状的染色质结构蛋白——高迁移率族AT钩蛋白1(HMGA1),决定了雌性减数分裂中着丝粒周围卫星DNA的包装。小家鼠和西班牙小鼠这两个密切相关的小鼠物种中,着丝粒周围的异染色质形成于不同的卫星DNA上,这些卫星DNA在狭窄DNA小沟的密度和HMGA1募集方面均存在差异。HMGA1优先结合小家鼠的卫星DNA,在小家鼠卵母细胞中敲除HMGA1会导致着丝粒周围卫星DNA大量伸展、动粒组织破坏以及双极纺锤体组装延迟。在小家鼠×西班牙小鼠的杂交卵母细胞中,敲除HMGA1对小家鼠着丝粒及其动粒上微管附着的损害尤为严重。因此,DNA形状既影响着丝粒周围的包装,也影响分离机制。我们提出,当着丝粒和着丝粒周围的DNA采用保守结构蛋白(如HMGA1)识别的DNA形状时,其快速演变不会破坏这些基本过程。通过包装这些卫星DNA,结构蛋白成为着丝粒和着丝粒周围染色质的一部分,这表明了一种降低兆碱基规模卫星DNA扩展成本的进化策略。