Suppr超能文献

CDC50A 细胞外结构域对于与磷脂翻转酶形成功能复合物以及将其伴侣蛋白易位到质膜是必需的。

The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.

机构信息

From the Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.

From the Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan

出版信息

J Biol Chem. 2018 Feb 9;293(6):2172-2182. doi: 10.1074/jbc.RA117.000289. Epub 2017 Dec 24.

Abstract

Flippases are enzymes that translocate phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) from the outer to the inner leaflet in the lipid bilayer of the plasma membrane, leading to the asymmetric distribution of aminophospholipids in the membrane. One mammalian phospholipid flippase at the plasma membrane is ATP11C, a type IV P-type ATPase (P4-ATPase) that forms a heterocomplex with the transmembrane protein CDC50A. However, the structural features in CDC50A that support the function of ATP11C and other P4-ATPases have not been characterized. Here, using error-prone PCR-mediated mutagenesis of human cDNA followed by functional screening and deep sequencing, we identified 14 amino acid residues that affect ATP11C's flippase activity. These residues were all located in CDC50A's extracellular domain and were evolutionarily well-conserved. Most of the mutations decreased CDC50A's ability to chaperone ATP11C and other P4-ATPases to their destinations. The CDC50A mutants failed to form a stable complex with ATP11C and could not induce ATP11C's PtdSer-dependent ATPase activity. Notably, one mutant variant could form a stable complex with ATP11C and transfer ATP11C to the plasma membrane, yet the ATP11C complexed with this CDC50A variant had very weak or little PtdSer- or PtdEtn-dependent ATPase activity. These results indicated that the extracellular domain of CDC50A has important roles both in CDC50A's ability to chaperone ATP11C to the plasma membrane and in inducing ATP11C's ATP hydrolysis-coupled flippase activity.

摘要

翻转酶是将磷脂酰丝氨酸(PtdSer)和磷脂酰乙醇胺(PtdEtn)从质膜的脂质双层的外叶向内叶移位的酶,导致膜中氨基磷脂的不对称分布。质膜上的一种哺乳动物磷脂翻转酶是 ATP11C,它是一种 IV 型 P 型 ATP 酶(P4-ATPase),与跨膜蛋白 CDC50A 形成异源复合物。然而,CDC50A 中支持 ATP11C 和其他 P4-ATPases功能的结构特征尚未得到表征。在这里,我们使用易错 PCR 介导的人类 cDNA 诱变,然后进行功能筛选和深度测序,鉴定出 14 个影响 ATP11C 翻转酶活性的氨基酸残基。这些残基都位于 CDC50A 的细胞外结构域,并且在进化上保守性很好。大多数突变降低了 CDC50A 辅助 ATP11C 和其他 P4-ATPases到达其目的地的能力。CDC50A 突变体不能与 ATP11C 形成稳定的复合物,也不能诱导 ATP11C 的 PtdSer 依赖性 ATP 酶活性。值得注意的是,一种突变变体可以与 ATP11C 形成稳定的复合物并将 ATP11C 转移到质膜,但与这种 CDC50A 变体复合的 ATP11C 复合物具有非常弱或几乎没有 PtdSer 或 PtdEtn 依赖性 ATP 酶活性。这些结果表明,CDC50A 的细胞外结构域在 CDC50A 将 ATP11C 伴侣到质膜的能力以及诱导 ATP11C 的 ATP 水解偶联翻转酶活性中都具有重要作用。

相似文献

2
Human Type IV P-type ATPases That Work as Plasma Membrane Phospholipid Flippases and Their Regulation by Caspase and Calcium.
J Biol Chem. 2016 Jan 8;291(2):762-72. doi: 10.1074/jbc.M115.690727. Epub 2015 Nov 13.
3
Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells.
J Biol Chem. 2019 Apr 26;294(17):6809-6821. doi: 10.1074/jbc.RA118.007270. Epub 2019 Mar 8.
4
Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.
Science. 2014 Jun 6;344(6188):1164-8. doi: 10.1126/science.1252809.
5
ATP11C T418N, a gene mutation causing congenital hemolytic anemia, reduces flippase activity due to improper membrane trafficking.
Biochem Biophys Res Commun. 2019 Aug 27;516(3):705-712. doi: 10.1016/j.bbrc.2019.06.092. Epub 2019 Jun 25.
7
Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
J Biol Chem. 2014 Nov 28;289(48):33543-56. doi: 10.1074/jbc.M114.593012. Epub 2014 Oct 14.
8
Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
Cell Rep. 2020 Sep 29;32(13):108208. doi: 10.1016/j.celrep.2020.108208.
10
Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration.
J Biol Chem. 2013 Feb 15;288(7):4922-34. doi: 10.1074/jbc.M112.402701. Epub 2012 Dec 26.

引用本文的文献

1
Membrane asymmetry facilitates murine norovirus entry and persistent enteric infection.
PLoS Biol. 2025 Apr 17;23(4):e3003147. doi: 10.1371/journal.pbio.3003147. eCollection 2025 Apr.
2
Substrates, regulation, cellular functions, and disease associations of P4-ATPases.
Commun Biol. 2025 Jan 28;8(1):135. doi: 10.1038/s42003-025-07549-3.
3
Membrane asymmetry facilitates murine norovirus entry and persistent enteric infection.
bioRxiv. 2024 Nov 7:2024.11.06.622376. doi: 10.1101/2024.11.06.622376.
4
Regulated cell death in chronic kidney disease: current evidence and future clinical perspectives.
Front Cell Dev Biol. 2024 Oct 31;12:1497460. doi: 10.3389/fcell.2024.1497460. eCollection 2024.
5
Substrate specificity controlled by the exit site of human P4-ATPases, revealed by de novo point mutations in neurological disorders.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2415755121. doi: 10.1073/pnas.2415755121. Epub 2024 Oct 21.
6
Activation and substrate specificity of the human P4-ATPase ATP8B1.
Nat Commun. 2023 Nov 18;14(1):7492. doi: 10.1038/s41467-023-42828-9.
7
Asymmetric Distribution of Plasmalogens and Their Roles-A Mini Review.
Membranes (Basel). 2023 Aug 29;13(9):764. doi: 10.3390/membranes13090764.
9
Physiological and Pathological Functions of TMEM30A: An Essential Subunit of P4-ATPase Phospholipid Flippases.
J Lipids. 2023 May 9;2023:4625567. doi: 10.1155/2023/4625567. eCollection 2023.
10
Functional Analysis of the P-Type ATPases Apt2-4 from by Heterologous Expression in .
J Fungi (Basel). 2023 Feb 4;9(2):202. doi: 10.3390/jof9020202.

本文引用的文献

1
MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.
Brief Bioinform. 2019 Jul 19;20(4):1160-1166. doi: 10.1093/bib/bbx108.
2
Loss of Tmem30a leads to photoreceptor degeneration.
Sci Rep. 2017 Aug 24;7(1):9296. doi: 10.1038/s41598-017-09506-5.
3
Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9509-14. doi: 10.1073/pnas.1610403113. Epub 2016 Aug 8.
4
P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas.
Front Physiol. 2016 Jul 8;7:275. doi: 10.3389/fphys.2016.00275. eCollection 2016.
6
Getting membrane proteins on and off the shuttle bus between the endoplasmic reticulum and the Golgi complex.
J Cell Sci. 2016 Apr 15;129(8):1537-45. doi: 10.1242/jcs.183335. Epub 2016 Mar 30.
7
ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia.
Haematologica. 2016 May;101(5):559-65. doi: 10.3324/haematol.2016.142273. Epub 2016 Mar 4.
8
Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane.
Physiol Rev. 2016 Apr;96(2):605-45. doi: 10.1152/physrev.00020.2015.
9
ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes.
PLoS One. 2016 Jan 22;11(1):e0146774. doi: 10.1371/journal.pone.0146774. eCollection 2016.
10
Specific mutations in mammalian P4-ATPase ATP8A2 catalytic subunit entail differential glycosylation of the accessory CDC50A subunit.
FEBS Lett. 2015 Dec 21;589(24 Pt B):3908-14. doi: 10.1016/j.febslet.2015.11.031. Epub 2015 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验