Han Wenyan, Wang Huiqing, Li Jun, Zhang Shizhong, Lu Wei
Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Front Mol Neurosci. 2017 Dec 8;10:402. doi: 10.3389/fnmol.2017.00402. eCollection 2017.
In the brain, AMPA receptors (AMPARs)-mediated excitatory synaptic transmission is critically regulated by the receptor auxiliary subunits. Recent proteomic studies have identified that Ferric Chelate Reductase 1 Like protein (FRRS1L), whose mutations in human lead to epilepsy, choreoathetosis, and cognitive deficits, is present in native AMPAR complexes in the brain. Here we have characterized FRRS1L in both heterologous cells and in mouse neurons. We found that FRRS1L interacts with both GluA1 and GluA2 subunits of AMPARs, but does not form dimers/oligomers, in HEK cells. In mouse hippocampal neurons, recombinant FRRS1L at the neuronal surface partially co-localizes with GluA1 and primarily localizes at non-synaptic membranes. In addition, native FRRS1L in hippocampus is localized at dynein, but not kinesin5B, vesicles. Functionally, over-expression of FRRS1L in hippocampal neurons does not change glutamatergic synaptic transmission. In contrast, single-cell knockout (KO) of FRRS1L strongly reduces the expression levels of the GluA1 subunit at the neuronal surface, and significantly decreases AMPAR-mediated synaptic transmission in mouse hippocampal pyramidal neurons. Taken together, these data characterize FRRS1L in heterologous cells and neurons, and reveal an important role of FRRS1L in the regulation of excitatory synaptic strength.
在大脑中,α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPARs)介导的兴奋性突触传递受到受体辅助亚基的严格调控。最近的蛋白质组学研究发现,铁螯合还原酶1样蛋白(FRRS1L)存在于大脑中的天然AMPAR复合物中,该蛋白在人类中的突变会导致癫痫、舞蹈手足徐动症和认知缺陷。在这里,我们对异源细胞和小鼠神经元中的FRRS1L进行了表征。我们发现,在人胚肾(HEK)细胞中,FRRS1L与AMPARs的GluA1和GluA2亚基相互作用,但不形成二聚体/寡聚体。在小鼠海马神经元中,神经元表面的重组FRRS1L与GluA1部分共定位,主要定位于非突触膜。此外,海马中的天然FRRS1L定位于动力蛋白囊泡,而非驱动蛋白5B囊泡。在功能上,海马神经元中FRRS1L的过表达不会改变谷氨酸能突触传递。相反,FRRS1L的单细胞敲除(KO)会强烈降低神经元表面GluA1亚基的表达水平,并显著降低小鼠海马锥体神经元中AMPAR介导的突触传递。综上所述,这些数据对异源细胞和神经元中的FRRS1L进行了表征,并揭示了FRRS1L在调节兴奋性突触强度中的重要作用。