Suppr超能文献

基于时间标注数据的患者排序。

Patient ranking with temporally annotated data.

机构信息

Department of Biomedical Informatics, University of California, San Diego, United States.

出版信息

J Biomed Inform. 2018 Feb;78:43-53. doi: 10.1016/j.jbi.2017.12.007. Epub 2017 Dec 19.

Abstract

Modern medical information systems enable the collection of massive temporal health data. Albeit these data have great potentials for advancing medical research, the data exploration and extraction of useful knowledge present significant challenges. In this work, we develop a new pattern matching technique which aims to facilitate the discovery of clinically useful knowledge from large temporal datasets. Our approach receives in input a set of temporal patterns modeling specific events of interest (e.g., doctor's knowledge, symptoms of diseases) and it returns data instances matching these patterns (e.g., patients exhibiting the specified symptoms). The resulting instances are ranked according to a significance score based on the p-value. Our experimental evaluations on a real-world dataset demonstrate the efficiency and effectiveness of our approach.

摘要

现代医学信息系统能够收集大量的时间健康数据。尽管这些数据在推进医学研究方面具有巨大的潜力,但数据的探索和有用知识的提取仍然存在很大的挑战。在这项工作中,我们开发了一种新的模式匹配技术,旨在从大型时间数据集发现临床有用的知识。我们的方法接收一组时间模式作为输入,这些模式用于对特定感兴趣的事件进行建模(例如,医生的知识、疾病的症状),并返回匹配这些模式的数据实例(例如,表现出特定症状的患者)。根据基于 p 值的显著分数对得到的实例进行排序。我们在真实数据集上的实验评估证明了我们方法的效率和有效性。

相似文献

1
Patient ranking with temporally annotated data.
J Biomed Inform. 2018 Feb;78:43-53. doi: 10.1016/j.jbi.2017.12.007. Epub 2017 Dec 19.
2
Efficient Mining Template of Predictive Temporal Clinical Event Patterns From Patient Electronic Medical Records.
IEEE J Biomed Health Inform. 2019 Sep;23(5):2138-2147. doi: 10.1109/JBHI.2018.2877255. Epub 2018 Oct 22.
4
Analysis of care pathway variation patterns in patient records.
Stud Health Technol Inform. 2015;210:692-6.
5
Identifying and mitigating biases in EHR laboratory tests.
J Biomed Inform. 2014 Oct;51:24-34. doi: 10.1016/j.jbi.2014.03.016. Epub 2014 Apr 13.
8
Medical temporal-knowledge discovery via temporal abstraction.
AMIA Annu Symp Proc. 2009 Nov 14;2009:452-6.
10
Discovering metric temporal constraint networks on temporal databases.
Artif Intell Med. 2013 Jul;58(3):139-54. doi: 10.1016/j.artmed.2013.03.006. Epub 2013 May 6.

引用本文的文献

1
Noise-tolerant similarity search in temporal medical data.
J Biomed Inform. 2021 Jan;113:103667. doi: 10.1016/j.jbi.2020.103667. Epub 2020 Dec 25.
2
Temporal biomedical data analytics.
J Biomed Inform. 2019 Feb;90:103092. doi: 10.1016/j.jbi.2018.12.006. Epub 2019 Jan 14.

本文引用的文献

1
Linking temporal medical records using non-protected health information data.
Stat Methods Med Res. 2018 Nov;27(11):3304-3324. doi: 10.1177/0962280217698005. Epub 2017 Mar 16.
2
Doctor AI: Predicting Clinical Events via Recurrent Neural Networks.
JMLR Workshop Conf Proc. 2016 Aug;56:301-318. Epub 2016 Dec 10.
3
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
4
Evidence-based management of Kawasaki disease in the emergency department.
Pediatr Emerg Med Pract. 2015 Jan;12(1):1-20; quiz 21.
5
Evidence-based medicine in the EMR era.
N Engl J Med. 2011 Nov 10;365(19):1758-9. doi: 10.1056/NEJMp1108726. Epub 2011 Nov 2.
6
Medical temporal-knowledge discovery via temporal abstraction.
AMIA Annu Symp Proc. 2009 Nov 14;2009:452-6.
7
Modeling electronic discharge summaries as a simple temporal constraint satisfaction problem.
J Am Med Inform Assoc. 2005 Jan-Feb;12(1):55-63. doi: 10.1197/jamia.M1623. Epub 2004 Oct 18.
8
The Asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines.
Artif Intell Med. 1998 Sep-Oct;14(1-2):29-51. doi: 10.1016/s0933-3657(98)00015-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验