Saini Sheetal, Dua Sumeet
Data Mining Research Laboratory, Computer Science, Louisiana Tech University, Ruston, LA, USA.
Stud Health Technol Inform. 2013;192:1228.
Multivariate temporal data are collections of contiguous data values that reflect complex temporal changes over a given duration. Technological advances have resulted in significant amounts of such data in high-throughput disciplines, including EEG and iEEG data for effective and efficient healthcare informatics, and decision support. Most data analytics and data-mining algorithms are effective in capturing global trends, but fail to capture localized behavioral changes in large temporal data sets. We present a two-step algorithmic methodology to uncover temporal patterns and exploiting them for an efficient and accurate decision support system. This methodology aids the discovery of previously unknown, nontrivial, and potentially useful temporal patterns for enhanced patient-specific clinical decision support with high degrees of sensitivity and specificity. Classification results on multivariate time series iEEG data for epileptic seizure detection also demonstrate the efficacy and accuracy of the technique to uncover interesting and effective domain class-specific temporal patterns.
多变量时间数据是连续数据值的集合,反映了给定时间段内的复杂时间变化。技术进步已在高通量学科中产生了大量此类数据,包括用于有效且高效的医疗信息学和决策支持的脑电图(EEG)和颅内脑电图(iEEG)数据。大多数数据分析和数据挖掘算法在捕捉全局趋势方面很有效,但无法捕捉大型时间数据集中的局部行为变化。我们提出了一种两步算法方法来揭示时间模式,并将其用于高效且准确的决策支持系统。这种方法有助于发现以前未知的、重要的且可能有用的时间模式,以高度的敏感性和特异性增强针对特定患者的临床决策支持。用于癫痫发作检测的多变量时间序列iEEG数据的分类结果也证明了该技术在揭示有趣且有效的特定领域类别的时间模式方面的有效性和准确性。