Putkonen Matti, Sippola Perttu, Svärd Laura, Sajavaara Timo, Vartiainen Jari, Buchanan Iain, Forsström Ulla, Simell Pekka, Tammelin Tekla
VTT Technical Research Centre of Finland, PO Box 1000, 02044 VTT, Espoo, Finland.
Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland.
Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112). doi: 10.1098/rsta.2017.0037.
In this paper, we have optimized a low-temperature atomic layer deposition (ALD) of SiO using AP-LTO® 330 and ozone (O) as precursors, and demonstrated its suitability to surface-modify temperature-sensitive bio-based films of cellulose nanofibrils (CNFs). The lowest temperature for the thermal ALD process was 80°C when the silicon precursor residence time was increased by the stop-flow mode. The SiO film deposition rate was dependent on the temperature varying within 1.5-2.2 Å cycle in the temperature range of 80-350°C, respectively. The low-temperature SiO process that resulted was combined with the conventional trimethyl aluminium + HO process in order to prepare thin multilayer nanolaminates on self-standing CNF films. One to six stacks of SiO/AlO were deposited on the CNF films, with individual layer thicknesses of 3.7 nm and 2.6 nm, respectively, combined with a 5 nm protective SiO layer as the top layer. The performance of the multilayer hybrid nanolaminate structures was evaluated with respect to the oxygen and water vapour transmission rates. Six stacks of SiO/AlO with a total thickness of approximately 35 nm efficiently prevented oxygen and water molecules from interacting with the CNF film. The oxygen transmission rates analysed at 80% RH decreased from the value for plain CNF film of 130 ml m d to 0.15 ml m d, whereas the water transmission rates lowered from 630 ± 50 g m d down to 90 ± 40 g m dThis article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.
在本文中,我们使用AP-LTO® 330和臭氧(O)作为前驱体,优化了SiO的低温原子层沉积(ALD),并证明了其适用于对温度敏感的纤维素纳米原纤维(CNF)生物基薄膜进行表面改性。当通过停流模式增加硅前驱体的停留时间时,热ALD工艺的最低温度为80°C。SiO薄膜的沉积速率取决于温度,在80 - 350°C的温度范围内,沉积速率分别在1.5 - 2.2 Å/循环之间变化。由此产生的低温SiO工艺与传统的三甲基铝 + HO工艺相结合,以便在自立式CNF薄膜上制备多层纳米叠层。在CNF薄膜上沉积了1至6层的SiO/AlO叠层,单层厚度分别为3.7 nm和2.6 nm,并在顶层结合了一层5 nm的保护性SiO层。针对氧气和水蒸气透过率对多层混合纳米叠层结构的性能进行了评估。六层总厚度约为35 nm的SiO/AlO叠层有效地阻止了氧气和水分子与CNF薄膜相互作用。在80%相对湿度下分析的氧气透过率从普通CNF薄膜的130 ml m⁻² d⁻¹降至0.15 ml m⁻² d⁻¹,而水透过率从630 ± 50 g m⁻² d⁻¹降至90 ± 40 g m⁻² d⁻¹。本文是“纤维素纳米技术的新视野”讨论会议特刊的一部分。