Kazmierczak Nathanael P, Lopez Nathan E, Luedecke Kaitlin M, Hadt Ryan G
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology Pasadena California 91125 USA
Chem Sci. 2024 Jan 12;15(7):2380-2390. doi: 10.1039/d3sc05774g. eCollection 2024 Feb 14.
Pinpointing vibrational mode contributions to electron spin relaxation () constitutes a key goal for developing molecular quantum bits (qubits) with long room-temperature coherence times. However, there remains no consensus to date as to the energy and symmetry of the relevant modes that drive relaxation. Here, we analyze a series of three geometrically-tunable = ½ Cu(ii) porphyrins with varying degrees of ruffling distortion in the ground state. Theoretical calculations predict that increased distortion should activate low-energy ruffling modes (∼50 cm) for spin-phonon coupling, thereby causing faster spin relaxation in distorted porphyrins. However, experimental times do not follow the degree of ruffling, with the highly distorted copper tetraisopropylporphyrin (CuTiPP) even displaying room-temperature coherence. Local mode fitting indicates that the true vibrations dominating lie in the energy regime of bond stretches (∼200-300 cm), which are comparatively insensitive to the degree of ruffling. We employ resonance Raman (rR) spectroscopy to determine vibrational modes possessing both the correct energy and symmetry to drive spin-phonon coupling. The rR spectra uncover a set of mixed symmetric stretch vibrations from 200-250 cm that explain the trends in temperature-dependent . These results indicate that molecular spin-phonon coupling models systematically overestimate the contribution of ultra-low-energy distortion modes to , pointing out a key deficiency of existing theory. Furthermore, this work highlights the untapped power of rR spectroscopy as a tool for building spin dynamics structure-property relationships in molecular quantum information science.
确定振动模式对电子自旋弛豫()的贡献是开发具有长室温相干时间的分子量子比特(量子位)的关键目标。然而,迄今为止,对于驱动弛豫的相关模式的能量和对称性仍未达成共识。在这里,我们分析了一系列三种在基态具有不同程度褶皱畸变的几何可调谐的 = ½ Cu(II)卟啉。理论计算预测,增加的畸变应激活用于自旋 - 声子耦合的低能量褶皱模式(50 cm),从而导致畸变卟啉中更快的自旋弛豫。然而,实验时间并不遵循褶皱程度,高度畸变的四异丙基铜卟啉(CuTiPP)甚至表现出室温相干性。局部模式拟合表明,主导的真实振动位于键伸缩的能量范围(200 - 300 cm)内,这对褶皱程度相对不敏感。我们采用共振拉曼(rR)光谱来确定具有正确能量和对称性以驱动自旋 - 声子耦合的振动模式。rR光谱揭示了一组200 - 250 cm的混合对称伸缩振动,解释了温度依赖性的趋势。这些结果表明,分子自旋 - 声子耦合模型系统性地高估了超低能量畸变模式对的贡献,指出了现有理论的一个关键缺陷。此外,这项工作突出了rR光谱作为在分子量子信息科学中建立自旋动力学结构 - 性质关系的工具所具有的未开发潜力。