Lin Zhimin, Zeng Ying, Tong Li, Zhang Hangming, Zhang Chi, Yan Bin
China National Digital Switching System Engineering and Technological Research Center, Zhengzhou, China.
Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
PLoS One. 2017 Dec 28;12(12):e0184713. doi: 10.1371/journal.pone.0184713. eCollection 2017.
The application of electroencephalogram (EEG) generated by human viewing images is a new thrust in image retrieval technology. A P300 component in the EEG is induced when the subjects see their point of interest in a target image under the rapid serial visual presentation (RSVP) experimental paradigm. We detected the single-trial P300 component to determine whether a subject was interested in an image. In practice, the latency and amplitude of the P300 component may vary in relation to different experimental parameters, such as target probability and stimulus semantics. Thus, we proposed a novel method, Target Recognition using Image Complexity Priori (TRICP) algorithm, in which the image information is introduced in the calculation of the interest score in the RSVP paradigm. The method combines information from the image and EEG to enhance the accuracy of single-trial P300 detection on the basis of traditional single-trial P300 detection algorithm. We defined an image complexity parameter based on the features of the different layers of a convolution neural network (CNN). We used the TRICP algorithm to compute for the complexity of an image to quantify the effect of different complexity images on the P300 components and training specialty classifier according to the image complexity. We compared TRICP with the HDCA algorithm. Results show that TRICP is significantly higher than the HDCA algorithm (Wilcoxon Sign Rank Test, p<0.05). Thus, the proposed method can be used in other and visual task-related single-trial event-related potential detection.
将人类观看图像时产生的脑电图(EEG)应用于图像检索技术是该领域的一个新趋势。在快速序列视觉呈现(RSVP)实验范式下,当受试者在目标图像中看到他们感兴趣的点时,脑电图中会诱发一个P300成分。我们检测单次试验的P300成分,以确定受试者是否对某幅图像感兴趣。在实际操作中,P300成分的潜伏期和波幅可能会因不同的实验参数而有所变化,如目标概率和刺激语义。因此,我们提出了一种新颖的方法——基于图像复杂度先验的目标识别(TRICP)算法,该算法在RSVP范式的兴趣得分计算中引入了图像信息。该方法在传统单次试验P300检测算法的基础上,结合图像和脑电图信息,提高了单次试验P300检测的准确性。我们基于卷积神经网络(CNN)不同层的特征定义了一个图像复杂度参数。我们使用TRICP算法计算图像的复杂度,以量化不同复杂度图像对P300成分的影响,并根据图像复杂度训练专业分类器。我们将TRICP与HDCA算法进行了比较。结果表明,TRICP显著高于HDCA算法(Wilcoxon符号秩检验,p<0.05)。因此,所提出的方法可用于其他与视觉任务相关的单次试验事件相关电位检测。