Yuan Zijian, Zhou Qian, Wang Baozeng, Zhang Qi, Yang Yang, Zhao Yuwei, Guo Yong, Zhou Jin, Wang Changyong
School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guangxi, China.
Beijing Institute of Basic Medical Sciences, Beijing, China.
Front Hum Neurosci. 2024 May 2;18:1385360. doi: 10.3389/fnhum.2024.1385360. eCollection 2024.
Accurate classification of single-trial electroencephalogram (EEG) is crucial for EEG-based target image recognition in rapid serial visual presentation (RSVP) tasks. P300 is an important component of a single-trial EEG for RSVP tasks. However, single-trial EEG are usually characterized by low signal-to-noise ratio and limited sample sizes.
Given these challenges, it is necessary to optimize existing convolutional neural networks (CNNs) to improve the performance of P300 classification. The proposed CNN model called PSAEEGNet, integrates standard convolutional layers, pyramid squeeze attention (PSA) modules, and deep convolutional layers. This approach arises the extraction of temporal and spatial features of the P300 to a finer granularity level.
Compared with several existing single-trial EEG classification methods for RSVP tasks, the proposed model shows significantly improved performance. The mean true positive rate for PSAEEGNet is 0.7949, and the mean area under the receiver operating characteristic curve (AUC) is 0.9341 ( < 0.05).
These results suggest that the proposed model effectively extracts features from both temporal and spatial dimensions of P300, leading to a more accurate classification of single-trial EEG during RSVP tasks. Therefore, this model has the potential to significantly enhance the performance of target recognition systems based on EEG, contributing to the advancement and practical implementation of target recognition in this field.
在快速序列视觉呈现(RSVP)任务中,单通道脑电图(EEG)的准确分类对于基于EEG的目标图像识别至关重要。P300是RSVP任务中单通道EEG的一个重要组成部分。然而,单通道EEG通常具有低信噪比和有限样本量的特点。
鉴于这些挑战,有必要优化现有的卷积神经网络(CNN)以提高P300分类的性能。所提出的名为PSAEEGNet的CNN模型集成了标准卷积层、金字塔挤压注意力(PSA)模块和深度卷积层。这种方法将P300的时空特征提取提升到更精细的粒度级别。
与几种现有的用于RSVP任务的单通道EEG分类方法相比,所提出的模型表现出显著提高的性能。PSAEEGNet的平均真阳性率为0.7949,接收器操作特征曲线(AUC)下的平均面积为0.9341(<0.05)。
这些结果表明,所提出的模型有效地从P300的时间和空间维度中提取特征,从而在RSVP任务期间对单通道EEG进行更准确的分类。因此,该模型有可能显著提高基于EEG的目标识别系统的性能,有助于该领域目标识别的进步和实际应用。