Suppr超能文献

基于符号化 EEG 和自编码-(1D)CNN 的单次 P300 检测器,以提高脑机接口中的 ITR 性能。

A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs.

机构信息

Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70124 Bari, Italy.

出版信息

Sensors (Basel). 2021 Jun 8;21(12):3961. doi: 10.3390/s21123961.

Abstract

In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain-computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome.

摘要

在本文中,我们提出了一种突破性的单试 P300 探测器,它最大限度地提高了脑机接口(BCI)的信息传输率(ITR),同时保持了高识别准确率。该架构旨在提高算法的便携性,在专用嵌入式平台上完全实现了设计。所提出的 P300 探测器基于 EEG 信号符号化的新预处理阶段和自动编码卷积神经网络(CNN)的组合。该系统仅从六个 EEG 通道获取数据;因此,它使用包括基线校正、风力校正和符号化在内的低复杂度预处理阶段对其进行处理。然后,将符号化的 EEG 信号发送到自动编码器模型,以强调那些对后续 CNN 阶段有意义的时间特征。后者由一个包含一维卷积层和三个密集层的七层 CNN 组成。分析了两个数据集来评估算法性能:一个来自 BCI 竞赛 III 数据中的 P300 拼写器应用程序,另一个来自在流体原型汽车驾驶实验期间收集的数据。在 P300 拼写器数据集上的实验结果表明,所提出的方法在两个受试者上的平均 ITR(平均信息传输率)为 16.83 位/分钟,比该参数的最新技术水平高出+5.75 位/分钟。与速度提高一起,识别性能在精度和召回率的调和平均值(F1 分数)方面也取得了显著的结果,达到了 51.78±6.24%。在原型汽车驾驶中使用相同的方法,在单次 P300 检测环境下实现了约 33 位/分钟的 ITR 和 70.00%的 F1 分数,允许 BCI 流畅地用于驾驶目的。所实现的网络已经在 STM32L4 微控制器目标上进行了验证,用于评估复杂性和实现。实现表明,总可用 ROM 的总体资源占用率为 5.57%,可用 RAM 的占用率约为 3%,分类结果的生成时间不到 3.5 毫秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/992e/8226883/8130b1e70c91/sensors-21-03961-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验