Kafando Alexis, Fournier Eric, Serhir Bouchra, Martineau Christine, Doualla-Bell Florence, Sangaré Mohamed Ndongo, Sylla Mohamed, Chamberland Annie, El-Far Mohamed, Charest Hugues, Tremblay Cécile L
Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.
Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada.
PLoS One. 2017 Dec 28;12(12):e0189999. doi: 10.1371/journal.pone.0189999. eCollection 2017.
Identifying recent HIV-1 infections is crucial for monitoring HIV-1 incidence and optimizing public health prevention efforts. To identify recent HIV-1 infections, we evaluated and compared the performance of 4 sequence-based diversity measures including percent diversity, percent complexity, Shannon entropy and number of haplotypes targeting 13 genetic segments within the env gene of HIV-1. A total of 597 diagnostic samples obtained in 2013 and 2015 from recently and chronically HIV-1 infected individuals were selected. From the selected samples, 249 (134 from recent versus 115 from chronic infections) env coding regions, including V1-C5 of gp120 and the gp41 ectodomain of HIV-1, were successfully amplified and sequenced by next generation sequencing (NGS) using the Illumina MiSeq platform. The ability of the four sequence-based diversity measures to correctly identify recent HIV infections was evaluated using the frequency distribution curves, median and interquartile range and area under the curve (AUC) of the receiver operating characteristic (ROC). Comparing the median and interquartile range and evaluating the frequency distribution curves associated with the 4 sequence-based diversity measures, we observed that the percent diversity, number of haplotypes and Shannon entropy demonstrated significant potential to discriminate recent from chronic infections (p<0.0001). Using the AUC of ROC analysis, only the Shannon entropy measure within three HIV-1 env segments could accurately identify recent infections at a satisfactory level. The env segments were gp120 C2_1 (AUC = 0.806), gp120 C2_3 (AUC = 0.805) and gp120 V3 (AUC = 0.812). Our results clearly indicate that the Shannon entropy measure represents a useful tool for predicting HIV-1 infection recency.
识别近期的HIV-1感染对于监测HIV-1发病率和优化公共卫生预防措施至关重要。为了识别近期的HIV-1感染,我们评估并比较了4种基于序列的多样性指标的性能,包括多样性百分比、复杂性百分比、香农熵和单倍型数量,这些指标针对HIV-1包膜基因内的13个基因片段。共选取了2013年和2015年从近期和慢性HIV-1感染者中获得的597份诊断样本。从所选样本中,使用Illumina MiSeq平台通过下一代测序(NGS)成功扩增并测序了249个env编码区(134个来自近期感染,115个来自慢性感染),包括gp120的V1-C5和HIV-1的gp41胞外域。使用接受者操作特征(ROC)的频率分布曲线、中位数和四分位间距以及曲线下面积(AUC)评估了这4种基于序列的多样性指标正确识别近期HIV感染的能力。比较中位数和四分位间距并评估与这4种基于序列的多样性指标相关的频率分布曲线,我们观察到多样性百分比、单倍型数量和香农熵在区分近期感染和慢性感染方面具有显著潜力(p<0.0001)。使用ROC分析的AUC,只有HIV-1包膜基因三个片段内的香农熵指标能够在令人满意的水平上准确识别近期感染。这些包膜基因片段是gp120 C2_1(AUC = 0.806)、gp120 C2_3(AUC = 0.805)和gp120 V3(AUC = 0.812)。我们的结果清楚地表明香农熵指标是预测HIV-感染近期性的有用工具。