Department of Chemistry, Materials Science and Engineering, Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States.
Bioconjug Chem. 2018 Jan 17;29(1):126-135. doi: 10.1021/acs.bioconjchem.7b00657. Epub 2017 Dec 29.
The intracellular delivery of synthetic nucleic acids represents a major challenge in biotechnology and in biomedicine. Methods to deliver short, double-stranded RNA to living cells are of particular interest because of the potential to engage the RNA interference machinery and to regulate mRNA expression. In this work, we describe novel RNA-polymer amphiphiles that assemble into spherical micellar nanoparticles with diameters of ca. 15-30 nm and efficiently enter live cells without transfection reagents. Each micelle consists of approximately 100 RNA strands forming a densely packed corona around a polymeric core. Importantly, the surface-displayed RNA remains accessible for hybridization with complementary RNA. Chemical modification of the termini of hybridized RNA strands enabled the display of small organic moieties on the outer surface of the micelle corona. We found that some of these modifications can have a tremendous impact on cellular internalization efficiencies. The display of hydrophobic dabcyl or stilbene units dramatically increased cell uptake, whereas hydrophilic neutral hydroxy or anionic phosphate residues were ineffective. Interestingly, neither of these modifications mediated noticeable uptake of free RNA oligonucleotides. We infer that their high density display on micellar nanoparticle surfaces is key for the observed effect; achieved with local effective surface concentrations in the millimolar range. We speculate that weak interactions with cell surface receptors that are amplified by the multivalent presentation of such modifications may be responsible. The installation of small molecule ligands on nanomaterial surfaces via hybridization of chemically modified oligonucleotides offers a simple and straightforward way to modulate cellular uptake of nanoparticles. Biological functionality of micellar RNA was demonstrated through the sequence-specific regulation of mRNA expression in HeLa cells.
合成核酸的细胞内递呈在生物技术和生物医学中是一个重大的挑战。将短的双链 RNA 递送至活细胞的方法特别具有吸引力,因为它有可能利用 RNA 干扰机制并调节 mRNA 表达。在这项工作中,我们描述了新型的 RNA-聚合物两亲物,它们组装成直径约为 15-30nm 的球形胶束纳米颗粒,并在没有转染试剂的情况下有效地进入活细胞。每个胶束由大约 100 个 RNA 链组成,这些 RNA 链在聚合物核的周围形成紧密堆积的冠。重要的是,表面展示的 RNA 仍然可用于与互补的 RNA 杂交。杂交 RNA 链的末端的化学修饰使能够在胶束冠的外表面上展示小的有机部分。我们发现,这些修饰中的一些可以对细胞内化效率产生巨大影响。疏水性的 dabcyl 或 stilbene 单元的显示大大增加了细胞摄取,而亲水性的中性羟基或阴离子磷酸酯基团则无效。有趣的是,这些修饰都没有介导游离 RNA 寡核苷酸的明显摄取。我们推断,它们在胶束纳米颗粒表面上的高密度显示是观察到的效果的关键;在毫摩尔范围内实现了局部有效表面浓度。我们推测,与细胞表面受体的弱相互作用通过这种修饰的多价呈现而被放大,可能是负责的原因。通过化学修饰的寡核苷酸的杂交将小分子配体安装在纳米材料表面上,为调节纳米颗粒的细胞摄取提供了一种简单而直接的方法。通过在 HeLa 细胞中特异性调节 mRNA 表达,证明了胶束 RNA 的生物学功能。