Frontier Institute for Biomolecular Engineering Research (FIBER), ‡Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), and §Graduate School of FIRST, Konan University , 17-1-20 minatojima-minamimachi, Kobe 650-0047, Japan.
J Am Chem Soc. 2018 Jan 17;140(2):642-651. doi: 10.1021/jacs.7b09449. Epub 2018 Jan 8.
DNA G-quadruplex formation is highly responsive to surrounding conditions, particularly K concentration. Malignant cancer cells have a much lower K concentration than normal cells because of overexpression of a K channel; thus, G-quadruplexes may be unstable in cancer cells. Here, we physicochemically investigated how changes in intracellular chemical environments in vitro and in cells influence G-quadruplex formation and transcription during tumor progression. In vitro, the stable G-quadruplex formation inhibits transcription in a solution containing 150 mM KCl (normal condition). As K concentration decreases, which decreases G-quadruplex stability, transcript production from templates with G-quadruplex-forming potential increases. In normal cells, the trend in transcript productions was similar to that in in vitro experiments, with transcription efficiency inversely correlated with G-quadruplex stability. Interestingly, higher transcript levels were produced from templates with G-quadruplex-forming potential in Ras-transformed and highly metastatic breast cancer cells (MDA-MB-231) than in nontransformed and control MCF-7 cells. Moreover, the amount of transcript produced from G-quadruplex-forming templates decreased upon addition of siRNA targeting KCNH1 mRNA, which encodes a potassium voltage-gated channel subfamily H member 1 (K10.1). Importantly, G-quadruplex dissociation during tumor progression was observed by immunofluorescence using a G-quadruplex-binding antibody in cells. These results suggest that in normal cells, K ions attenuate the transcription of certain oncogenes by stabilizing G-quadruplex structures. Our findings provide insight into the novel mechanism of overexpression of certain G-rich genes during tumor progression.
DNA 四链体的形成对周围环境高度敏感,尤其是钾浓度。由于钾通道的过度表达,恶性癌细胞的钾浓度比正常细胞低得多;因此,四链体在癌细胞中可能不稳定。在这里,我们从物理化学的角度研究了细胞内化学环境的变化如何影响肿瘤进展过程中体外和细胞内的四链体形成和转录。在体外,稳定的四链体形成会抑制在含有 150 mM KCl(正常条件)的溶液中的转录。随着钾浓度的降低,四链体的稳定性降低,具有形成四链体潜力的模板的转录产物增加。在正常细胞中,转录产物的趋势与体外实验相似,转录效率与四链体的稳定性成反比。有趣的是,具有形成四链体潜力的模板在 Ras 转化的和高转移性乳腺癌细胞(MDA-MB-231)中产生的转录物水平比未转化的和对照 MCF-7 细胞更高。此外,添加靶向编码钾电压门控通道亚家族 H 成员 1(K10.1)的 KCNH1 mRNA 的 siRNA 后,从形成四链体的模板产生的转录物的量减少。重要的是,在细胞中使用四链体结合抗体通过免疫荧光观察到肿瘤进展过程中的四链体解离。这些结果表明,在正常细胞中,钾离子通过稳定四链体结构来减弱某些癌基因的转录。我们的研究结果为肿瘤进展过程中某些富含 G 的基因过度表达的新机制提供了线索。