Suppr超能文献

车载传感器网络中基于雾计算的两阶段事件监测与数据收集

Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks.

作者信息

Lai Yongxuan, Yang Fan, Su Jinsong, Zhou Qifeng, Wang Tian, Zhang Lu, Xu Yifan

机构信息

School of Software, Xiamen University, 422 Siming South Road, Siming District, Xiamen 360000, China.

Department of Automation, Xiamen University, 422 Siming South Road, Siming District, Xiamen 360000, China.

出版信息

Sensors (Basel). 2017 Dec 29;18(1):82. doi: 10.3390/s18010082.

Abstract

Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data.

摘要

车辆节点配备了越来越多的传感单元,产生了大量的传感数据。最近,越来越多的研究将协同城市传感视为智能绿色城市交通管理的核心。该平台的关键组件将是一个普及的车辆传感系统与一个中央控制和分析系统的结合,其中数据收集是一个基本组件。然而,由于数据量巨大以及网络的动态特性,数据收集和监测在车辆传感器网络中也是具有挑战性的问题。在本文中,我们提出了一种基于车辆传感器网络中雾节点的高效连续事件监测和数据收集框架。采用基于雾的两级阈值策略来抑制不必要的数据上传和传输。在监测阶段,节点以低成本传感模式感知环境并生成传感数据。当事件发生的概率较高且超过某个阈值时,节点进入事件检查阶段,并选择一些节点转换到深度传感模式以生成更准确的环境数据。此外,它会自适应地调整阈值以上传适量的数据用于决策,同时抑制不必要的消息传输。仿真结果表明,与其他现有算法相比,该方案可以减少超过84%的数据传输,同时能够检测事件并收集事件数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1b7/5795867/b91b4138b3d2/sensors-18-00082-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验