Bose Sougato, Mazumdar Anupam, Morley Gavin W, Ulbricht Hendrik, Toroš Marko, Paternostro Mauro, Geraci Andrew A, Barker Peter F, Kim M S, Milburn Gerard
Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom.
Van Swinderen Institute University of Groningen, 9747 AG Groningen, The Netherlands.
Phys Rev Lett. 2017 Dec 15;119(24):240401. doi: 10.1103/PhysRevLett.119.240401. Epub 2017 Dec 13.
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.
在量子力学框架下理解引力是现代物理学的重大挑战之一。然而,缺乏经验证据引发了关于引力是否为量子实体的争论。尽管针对量子引力提出了各种探测方法,但公平地说,目前尚无可行的想法能在实验室实验中直接测试其量子相干行为。在此,我们基于两个物体若无量子媒介就无法纠缠这一原理,提出一种此类测试的想法。我们表明,尽管引力微弱,但相邻物质波干涉仪中两个微米尺寸测试质量块之间的引力相互作用所引发的相位演化,即使在它们放置得足够远以避免卡西米尔 - 波尔德力的情况下,也能使它们可探测地纠缠在一起。我们提供了一种通过简单的自旋关联测量来见证这种纠缠的方法,该方法可证明引力是一种量子相干媒介。