Suppr超能文献

随机时间网络上的最优量子空间搜索

Optimal Quantum Spatial Search on Random Temporal Networks.

作者信息

Chakraborty Shantanav, Novo Leonardo, Di Giorgio Serena, Omar Yasser

机构信息

Instituto de Telecomunicações, Physics of Information and Quantum Technologies Group, Lisbon, Portugal and Instituto Superior Técnico, Universidade de Lisboa, Portugal.

出版信息

Phys Rev Lett. 2017 Dec 1;119(22):220503. doi: 10.1103/PhysRevLett.119.220503. Epub 2017 Nov 28.

Abstract

To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G(n,p), where p is the probability that any two given nodes are connected: After every time interval τ, a new graph G(n,p) replaces the previous one. We prove analytically that, for any given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O(sqrt[n]), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

摘要

为了研究量子信息任务在拓扑随时间变化的网络上的性能,我们通过连续时间量子行走研究空间搜索算法,以在随机时间网络上找到一个标记节点。我们考虑一个由厄多斯 - 雷尼随机图G(n,p)的时间有序序列构成的n个节点的网络,其中p是任意两个给定节点相连的概率:在每个时间间隔τ之后,一个新的图G(n,p)取代前一个图。我们通过分析证明,对于任何给定的p,总是存在一个τ值范围,对于该范围,即使在构成时间网络的各个静态图上的搜索不是最优的,算法的运行时间也是最优的,即O(√n)。另一方面,存在τ的一些范围,即使基础静态图中的每一个都具有足够的连通性以在其上执行最优搜索,算法在这些范围内也是次优的。从对时间相关网络上的量子空间搜索的首次研究中可以看出,时间性和连通性之间的非平凡相互作用是算法性能的关键。此外,我们的工作可以扩展到在网络的任意两个节点之间建立高保真量子比特转移。总体而言,我们的研究结果表明,可以利用时间性在动态随机网络上实现最优量子信息任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验