Suppr超能文献

量子游走的混合速度有多快?

How Fast Do Quantum Walks Mix?

作者信息

Chakraborty Shantanav, Luh Kyle, Roland Jérémie

机构信息

QuIC, Ecolé Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium.

Center for Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Phys Rev Lett. 2020 Feb 7;124(5):050501. doi: 10.1103/PhysRevLett.124.050501.

Abstract

The fundamental problem of sampling from the limiting distribution of quantum walks on networks, known as mixing, finds widespread applications in several areas of quantum information and computation. Of particular interest in most of these applications is the minimum time beyond which the instantaneous probability distribution of the quantum walk remains close to this limiting distribution, known as the "quantum mixing time". However, this quantity is only known for a handful of specific networks. In this Letter, we prove an upper bound on the quantum mixing time for almost all networks, i.e., the fraction of networks for which our bound holds, goes to one in the asymptotic limit. To this end, using several results in random matrix theory, we find the quantum mixing time of Erdös-Renyi random networks: networks of n nodes where each edge exists with probability p independently. For example, for dense random networks, where p is a constant, we show that the quantum mixing time is O(n^{3/2+o(1)}). In addition to opening avenues for the analytical study of quantum dynamics on random networks, our work could find applications beyond quantum information processing. Owing to the universality of Wigner random matrices, our results on the spectral properties of random graphs hold for general classes of random matrices that are ubiquitous in several areas of physics. In particular, our results could lead to novel insights into the equilibration times of isolated quantum systems defined by random Hamiltonians, a foundational problem in quantum statistical mechanics.

摘要

从网络上量子行走的极限分布进行采样的基本问题,即混合问题,在量子信息和计算的多个领域有着广泛应用。在这些应用中的大多数情况下,特别令人感兴趣的是量子行走的瞬时概率分布保持接近此极限分布的最短时间,即所谓的“量子混合时间”。然而,这个量仅在少数特定网络中是已知的。在本信函中,我们证明了几乎所有网络的量子混合时间的一个上界,也就是说,我们的界所适用的网络比例在渐近极限中趋于1。为此,利用随机矩阵理论中的几个结果,我们求出了厄多斯 - 雷尼随机网络的量子混合时间:具有n个节点的网络,其中每条边以概率p独立存在。例如,对于p为常数的稠密随机网络,我们表明量子混合时间为O(n^{3/2 + o(1)})。除了为随机网络上量子动力学的分析研究开辟途径外,我们的工作还可能在量子信息处理之外找到应用。由于维格纳随机矩阵的普遍性,我们关于随机图谱性质的结果适用于在物理学多个领域中普遍存在的一般类随机矩阵。特别是,我们的结果可能会为随机哈密顿量定义的孤立量子系统的平衡时间带来新的见解,这是量子统计力学中的一个基础问题。

相似文献

1
How Fast Do Quantum Walks Mix?量子游走的混合速度有多快?
Phys Rev Lett. 2020 Feb 7;124(5):050501. doi: 10.1103/PhysRevLett.124.050501.
3
Optimal Quantum Spatial Search on Random Temporal Networks.随机时间网络上的最优量子空间搜索
Phys Rev Lett. 2017 Dec 1;119(22):220503. doi: 10.1103/PhysRevLett.119.220503. Epub 2017 Nov 28.
7
Random walks on weighted networks.加权网络上的随机游走。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012112. doi: 10.1103/PhysRevE.87.012112. Epub 2013 Jan 14.
8
Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.网络上的分数量子力学:长程动力学与量子输运
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052814. doi: 10.1103/PhysRevE.92.052814. Epub 2015 Nov 30.
10

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验