Duponchel Ludovic
LASIR CNRS UMR 8516, Université Lille 1, Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France.
Anal Chim Acta. 2018 Feb 13;1000:123-131. doi: 10.1016/j.aca.2017.11.029. Epub 2017 Nov 22.
Analytical chemistry is rapidly changing. Indeed we acquire always more data in order to go ever further in the exploration of complex samples. Hyperspectral imaging has not escaped this trend. It quickly became a tool of choice for molecular characterisation of complex samples in many scientific domains. The main reason is that it simultaneously provides spectral and spatial information. As a result, chemometrics has provided many exploration tools (PCA, clustering, MCR-ALS …) well-suited for such data structure at early stage. However we are today facing a new challenge considering the always increasing number of pixels in the data cubes we have to manage. The idea is therefore to introduce a new paradigm of Topological Data Analysis in order explore hyperspectral imaging data sets highlighting its nice properties and specific features. With this paper, we shall also point out the fact that conventional chemometric methods are often based on variance analysis or simply impose a data model which implicitly defines the geometry of the data set. Thus we will show that it is not always appropriate in the framework of hyperspectral imaging data sets exploration.
分析化学正在迅速变化。事实上,为了更深入地探索复杂样品,我们一直在获取越来越多的数据。高光谱成像也未能摆脱这一趋势。它很快成为许多科学领域中复杂样品分子表征的首选工具。主要原因是它同时提供光谱和空间信息。因此,化学计量学提供了许多非常适合早期此类数据结构的探索工具(主成分分析、聚类、多元曲线分辨-交替最小二乘法……)。然而,考虑到我们必须处理的数据立方体中像素数量不断增加,我们如今面临着一个新的挑战。因此,引入拓扑数据分析的新范式以探索高光谱成像数据集,突出其良好特性和特定特征。在本文中,我们还将指出这样一个事实,即传统化学计量方法通常基于方差分析或简单地强加一个隐含定义数据集几何形状的数据模型。因此我们将表明,在高光谱成像数据集探索的框架中,它并不总是合适的。