Suppr超能文献

基于持续景观的拓扑表示的神经退行性疾病分类的步态节奏动力学。

Gait Rhythm Dynamics for Neuro-Degenerative Disease Classification via Persistence Landscape- Based Topological Representation.

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2020 Apr 3;20(7):2006. doi: 10.3390/s20072006.

Abstract

Neuro-degenerative disease is a common progressive nervous system disorder that leads to serious clinical consequences. Gait rhythm dynamics analysis is essential for evaluating clinical states and improving quality of life for neuro-degenerative patients. The magnitude of stride-to-stride fluctuations and corresponding changes over time-gait dynamics-reflects the physiology of gait, in quantifying the pathologic alterations in the locomotor control system of health subjects and patients with neuro-degenerative diseases. Motivated by algebra topology theory, a topological data analysis-inspired nonlinear framework was adopted in the study of the gait dynamics. Meanwhile, the topological representation-persistence landscapes were used as input of classifiers in order to distinguish different neuro-degenerative disease type from healthy. In this work, stride-to-stride time series from healthy control (HC) subjects are compared with the gait dynamics from patients with amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). The obtained results show that the proposed methodology discriminates healthy subjects from subjects with other neuro-degenerative diseases with relatively high accuracy. In summary, our study is the first attempt to provide a topological representation-based method into the disease classification with gait rhythms measured from the stride intervals to visualize gait dynamics and classify neuro-degenerative diseases. The proposed method could be potentially used in earlier interventions and state monitoring.

摘要

神经退行性疾病是一种常见的进行性神经系统疾病,会导致严重的临床后果。步态节律动力学分析对于评估神经退行性疾病患者的临床状态和提高生活质量至关重要。步长波动的幅度和随时间的相应变化——步态动力学——反映了步态的生理学,可量化健康受试者和神经退行性疾病患者运动控制系统的病理改变。受代数学拓扑理论的启发,该研究采用了一种基于拓扑数据分析的非线性框架来研究步态动力学。同时,拓扑表示——持久景观被用作分类器的输入,以将不同的神经退行性疾病类型与健康状况区分开来。在这项工作中,将健康对照组 (HC) 受试者的步长时间序列与肌萎缩侧索硬化症 (ALS)、亨廷顿病 (HD) 和帕金森病 (PD) 患者的步态动力学进行了比较。结果表明,该方法能够以较高的准确率将健康受试者与患有其他神经退行性疾病的受试者区分开来。总之,我们的研究首次尝试提供一种基于拓扑表示的方法,通过从步长间隔测量的步态节律进行疾病分类,以可视化步态动力学并对神经退行性疾病进行分类。该方法可能有用于早期干预和状态监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4790/7180793/8d672827a460/sensors-20-02006-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验