Geniesse Caleb, Chowdhury Samir, Saggar Manish
Biophysics Program, Stanford University, Stanford, CA, USA.
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Netw Neurosci. 2022 Jun 1;6(2):467-498. doi: 10.1162/netn_a_00229. eCollection 2022 Jun.
For better translational outcomes, researchers and clinicians alike demand novel tools to distill complex neuroimaging data into simple yet behaviorally relevant representations at the single-participant level. Recently, the Mapper approach from topological data analysis (TDA) has been successfully applied on noninvasive human neuroimaging data to characterize the entire dynamical landscape of whole-brain configurations at the individual level without requiring any spatiotemporal averaging at the outset. Despite promising results, initial applications of Mapper to neuroimaging data were constrained by (1) the need for dimensionality reduction and (2) lack of a biologically grounded heuristic for efficiently exploring the vast parameter space. Here, we present a novel computational framework for Mapper-designed specifically for neuroimaging data-that removes limitations and reduces computational costs associated with dimensionality reduction and parameter exploration. We also introduce new meta-analytic approaches to better anchor Mapper-generated representations to neuroanatomy and behavior. Our new NeuMapper framework was developed and validated using multiple fMRI datasets where participants engaged in continuous multitask experiments that mimic "ongoing" cognition. Looking forward, we hope our framework will help researchers push the boundaries of psychiatric neuroimaging toward generating insights at the single-participant level across consortium-size datasets.
为了获得更好的转化成果,研究人员和临床医生都需要新的工具,以便在单参与者层面将复杂的神经影像数据提炼成简单但与行为相关的表征。最近,拓扑数据分析(TDA)中的Mapper方法已成功应用于无创人类神经影像数据,以在个体层面表征全脑结构的整个动态格局,且无需一开始进行任何时空平均。尽管取得了有前景的结果,但Mapper在神经影像数据上的初步应用受到以下限制:(1)需要进行降维;(2)缺乏用于有效探索广阔参数空间的基于生物学的启发式方法。在此,我们提出了一种专门为神经影像数据设计的Mapper新型计算框架——该框架消除了与降维和参数探索相关的限制并降低了计算成本。我们还引入了新的元分析方法,以更好地将Mapper生成的表征与神经解剖学和行为联系起来。我们的新NeuMapper框架是使用多个功能磁共振成像(fMRI)数据集开发和验证的,在这些数据集中,参与者参与了模拟“持续”认知的连续多任务实验。展望未来,我们希望我们的框架将帮助研究人员突破精神科神经影像的界限,朝着在跨联盟规模数据集的单参与者层面产生见解的方向发展。