Wu Zuliang, Zhu Zhoubin, Hao Xiaodong, Zhou Weili, Han Jingyi, Tang Xiujuan, Yao Shuiliang, Zhang Xuming
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
J Hazard Mater. 2018 Apr 5;347:48-57. doi: 10.1016/j.jhazmat.2017.12.052. Epub 2017 Dec 25.
Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO/diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO/diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO/diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO, while the presence of ozone enhanced the activity of the TiO/diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO/diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions.
非热等离子体技术在减少多环芳烃(PAHs)排放方面具有巨大潜力。但在单独的等离子体过程中,会产生各种不希望有的副产物,从而造成二次污染。在此,已开发出一种介质阻挡放电(DBD)反应器,用于在低温下在TiO/硅藻土催化剂上氧化萘。与单独的等离子体过程相比,等离子体与TiO/硅藻土催化剂的组合显著提高了萘的转化率(高达40%)和CO选择性(高达92%),并大幅减少了气溶胶的形成(高达90%)和二次挥发性有机化合物的形成(高达近100%)。机理研究表明,TiO/硅藻土催化剂的存在增强了DBD中的电子能量。同时,放电中产生的激发电子激活了TiO,而臭氧的存在增强了TiO/硅藻土催化剂的活性。这种等离子体-催化剂相互作用导致了等离子体与TiO/硅藻土催化剂组合产生的协同效应,从而增强了萘的氧化。重要的是,我们已经证明了等离子体在无需外部加热的情况下激活光催化剂以深度氧化PAH的有效性,这在开发用于在冷启动条件下去除车辆应用中PAHs的经济高效气体净化工艺方面具有潜在价值。