Graduate Institute of Environmental Engineering, National Central University, No.300, Jhongda Road, Jhongli District, Taoyuan City, 32001, Taiwan.
Green Energy and Environment Institute, Industrial Technology Research Institute, Hsinchu, Taiwan.
Environ Sci Pollut Res Int. 2017 Sep;24(26):21496-21508. doi: 10.1007/s11356-017-9785-8. Epub 2017 Jul 26.
In this study, the concept of fast SCR for NO reduction with NH as reducing agent is realized via the combination of nonthermal plasma (NTP) with Mn-based catalyst. Experimental results indicate that 10% wt. Mn-Ce-Ni/TiO possesses better physical and chemical properties of surface, resulting in higher NO removal efficiency if compared with 10% wt. Mn-Ce/TiO and 10% wt. Mn-Ce-Cu/TiO. Mn-Ce-Ni/TiO of 10% wt. achieves 100% NO conversion at 150 °C, while 10% wt. Mn-Ce/TiO and 10% wt. Mn-Ce-Cu/TiO need to be operated at a temperature above 200 °C for 100% NO conversion. However, NO conversion achieved with 10% wt. Mn-Ce-Ni/TiO is significantly reduced as HO and SO are introduced into the SCR system simultaneously. Further, two-stage system (SCR with DBD) is compared with the catalyst-alone for NO conversion and N selectivity. The results indicate that 100% NO conversion can be achieved with two-stage system at 100 °C, while N selectivity reaches 80%. Importantly, NO conversion achieved with two-stage system could maintain >95% in the presence of CH, CO, SO, and HO, indicating that two-stage system has better tolerance for complicated gas composition. Overall, this study demonstrates that combining NTP with Mn-based catalyst is effective in reducing NO emission at a low temperature (≤200 °C) and has good potential for industrial application.
在这项研究中,通过将非热等离子体(NTP)与基于锰的催化剂相结合,实现了以 NH 作为还原剂的快速 SCR 去除 NO 的概念。实验结果表明,与 10wt% Mn-Ce/TiO 和 10wt% Mn-Ce-Cu/TiO 相比,10wt% Mn-Ce-Ni/TiO 具有更好的表面物理化学性能,导致更高的 NO 去除效率。在 150°C 时,10wt% Mn-Ce-Ni/TiO 达到 100%的 NO 转化率,而 10wt% Mn-Ce/TiO 和 10wt% Mn-Ce-Cu/TiO 需要在 200°C 以上的温度下才能达到 100%的 NO 转化率。然而,当同时向 SCR 系统中引入 HO 和 SO 时,10wt% Mn-Ce-Ni/TiO 实现的 NO 转化率显著降低。此外,还比较了两段式系统(SCR 与 DBD)与单独催化剂在 NO 转化率和 N 选择性方面的性能。结果表明,两段式系统在 100°C 时可实现 100%的 NO 转化率,而 N 选择性达到 80%。重要的是,两段式系统在存在 CH、CO、SO 和 HO 的情况下,NO 转化率仍能保持>95%,表明两段式系统对复杂气体成分具有更好的耐受性。总的来说,本研究表明,将 NTP 与基于锰的催化剂结合可有效降低低温(≤200°C)下的 NO 排放,具有很好的工业应用潜力。