Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, München, Germany.
Dev Cell. 2018 Jan 22;44(2):217-232.e11. doi: 10.1016/j.devcel.2017.11.024. Epub 2017 Dec 28.
Mechanisms of selective autophagy of the ER, known as ER-phagy, require molecular delineation, particularly in vivo. It is unclear how these events control ER proteostasis and cellular health. Here, we identify cell-cycle progression gene 1 (CCPG1), an ER-resident protein with no known physiological role, as a non-canonical cargo receptor that directly binds to core autophagy proteins via an LIR motif to mammalian ATG8 proteins and, independently and via a discrete motif, to FIP200. These interactions facilitate ER-phagy. The CCPG1 gene is inducible by the unfolded protein response and thus directly links ER stress to ER-phagy. In vivo, CCPG1 protects against ER luminal protein aggregation and consequent unfolded protein response hyperactivation and tissue injury of the exocrine pancreas. Thus, via identification of this autophagy protein, we describe an unexpected molecular mechanism of ER-phagy and provide evidence that this may be physiologically relevant in ER luminal proteostasis.
内质网选择性自噬(称为 ER 自噬)的机制需要分子描述,特别是在体内。这些事件如何控制内质网蛋白稳态和细胞健康尚不清楚。在这里,我们鉴定出细胞周期进展基因 1(CCPG1),一种内质网驻留蛋白,没有已知的生理作用,作为一种非典型的货物受体,通过 LIR 基序直接与核心自噬蛋白结合到哺乳动物 ATG8 蛋白上,并通过一个离散的基序独立地与 FIP200 结合。这些相互作用促进了 ER 自噬。CCPG1 基因可被未折叠蛋白反应诱导,因此直接将内质网应激与 ER 自噬联系起来。在体内,CCPG1 可防止内质网腔蛋白聚集以及随之而来的未折叠蛋白反应过度激活和外分泌胰腺组织损伤。因此,通过鉴定这种自噬蛋白,我们描述了一种内质网自噬的意外分子机制,并提供了证据表明这在内质网腔蛋白稳态方面可能具有生理相关性。