Suppr超能文献

复杂系统生物学模型的贝叶斯不确定性分析:仿真、全局参数搜索及基因功能评估。

Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.

作者信息

Vernon Ian, Liu Junli, Goldstein Michael, Rowe James, Topping Jen, Lindsey Keith

机构信息

Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE, UK.

Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.

出版信息

BMC Syst Biol. 2018 Jan 2;12(1):1. doi: 10.1186/s12918-017-0484-3.

Abstract

BACKGROUND

Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology.

METHODS

Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty.

RESULTS

The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described.

CONCLUSIONS

Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest.

摘要

背景

如今,许多数学模型已应用于系统生物学的各个领域。这些模型越来越多地涉及大量未知参数,具有复杂的结构,这可能导致相对于分析需求而言的大量评估时间,并且需要与各种形式的观测数据进行比较。对此类模型进行正确分析通常需要在高维参数空间中进行全局参数搜索,该搜索要纳入并考虑最重要的不确定性来源。这可能是一项极其困难的任务,但对于对任何生物系统进行任何有意义的推断或预测而言却是必不可少的。因此,它代表了整个系统生物学面临的一项根本性挑战。

方法

引入了用于复杂模型不确定性分析的贝叶斯统计方法,该方法旨在解决高维全局参数搜索问题。模仿系统生物学模型但评估速度极快的贝叶斯模拟器被嵌入到迭代历史匹配中:这是一种在更正式的统计环境中搜索高维空间的有效方法,同时纳入主要的不确定性来源。

结果

通过将该方法应用于拟南芥根发育中激素串扰的模型来进行演示,该模型有32个速率参数,我们确定了导致模型输出与观测趋势数据之间达到可接受匹配的速率参数值集。讨论了该分析为模型结构提供的多种见解。该方法应用于第二个相关模型,并描述了所得比较的生物学后果,包括基因功能的评估。

结论

使用模拟器和历史匹配对复杂模型进行贝叶斯不确定性分析被证明是一种强大的技术,可极大地帮助研究一大类系统生物学模型。它既能深入了解模型行为,又能识别出感兴趣的速率参数集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a21/5748965/ac34d40c6f24/12918_2017_484_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验