Suppr超能文献

激素串扰在根系发育中的作用:综合实验与模型的观点。

Hormonal crosstalk for root development: a combined experimental and modeling perspective.

机构信息

The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, The Biophysical Sciences Institute, Durham University Durham, UK.

出版信息

Front Plant Sci. 2014 Mar 27;5:116. doi: 10.3389/fpls.2014.00116. eCollection 2014.

Abstract

Plants are sessile organisms and therefore they must adapt their growth and architecture to a changing environment. Understanding how hormones and genes interact to coordinate plant growth in a changing environment is a major challenge in developmental biology. Although a localized auxin concentration maximum in the root tip is important for root development, auxin concentration cannot change independently of multiple interacting hormones and genes. In this review, we discuss the experimental evidence showing that the POLARIS peptide of Arabidopsis plays an important role in hormonal crosstalk and root growth, and review the crosstalk between auxin and other hormones for root growth with and without osmotic stress. Moreover, we discuss that experimental evidence showing that, in root development, hormones and the associated regulatory and target genes form a network, in which relevant genes regulate hormone activities and hormones regulate gene expression. We further discuss how it is increasingly evident that mathematical modeling is a valuable tool for studying hormonal crosstalk. Therefore, a combined experimental and modeling study on hormonal crosstalk is important for elucidating the complexity of root development.

摘要

植物是固着生物,因此它们必须适应不断变化的环境来调整生长和结构。了解激素和基因如何相互作用以协调不断变化环境中的植物生长是发育生物学的主要挑战。尽管根尖处局部的生长素浓度最大值对根的发育很重要,但生长素浓度不能独立于多种相互作用的激素和基因而改变。在这篇综述中,我们讨论了实验证据,表明拟南芥的 POLARIS 肽在激素串扰和根生长中发挥重要作用,并综述了在有和没有渗透胁迫的情况下,生长素和其他激素对根生长的串扰。此外,我们还讨论了实验证据表明,在根发育过程中,激素和相关的调节和靶基因形成一个网络,其中相关基因调节激素活性,而激素调节基因表达。我们进一步讨论了数学建模如何越来越明显地成为研究激素串扰的一种有价值的工具。因此,激素串扰的综合实验和建模研究对于阐明根发育的复杂性非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df43/3975122/c90437bc5cd0/fpls-05-00116-g0001.jpg

相似文献

1
Hormonal crosstalk for root development: a combined experimental and modeling perspective.
Front Plant Sci. 2014 Mar 27;5:116. doi: 10.3389/fpls.2014.00116. eCollection 2014.
3
Some fundamental aspects of modeling auxin patterning in the context of auxin-ethylene-cytokinin crosstalk.
Plant Signal Behav. 2015;10(10):e1056424. doi: 10.1080/15592324.2015.1056424. Epub 2015 Aug 3.
4
Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root development.
Front Plant Sci. 2013 Apr 5;4:75. doi: 10.3389/fpls.2013.00075. eCollection 2013.
7
Necessity for modeling hormonal crosstalk in arabidopsis root development?
Trends Plant Sci. 2025 May;30(5):484-498. doi: 10.1016/j.tplants.2025.02.009. Epub 2025 Mar 12.
8
Modelling and experimental analysis of hormonal crosstalk in Arabidopsis.
Mol Syst Biol. 2010 Jun 8;6:373. doi: 10.1038/msb.2010.26.
9
Deciphering Auxin-Ethylene Crosstalk at a Systems Level.
Int J Mol Sci. 2018 Dec 14;19(12):4060. doi: 10.3390/ijms19124060.
10
The Peach RGF/GLV Signaling Peptide pCTG134 Is Involved in a Regulatory Circuit That Sustains Auxin and Ethylene Actions.
Front Plant Sci. 2017 Oct 11;8:1711. doi: 10.3389/fpls.2017.01711. eCollection 2017.

引用本文的文献

1
To grow or not to grow: the enigma of plant root growth dynamism.
Plant Mol Biol. 2025 Jul 30;115(4):93. doi: 10.1007/s11103-025-01631-4.
3
Strategies of Molecular Signal Integration for Optimized Plant Acclimation to Stress Combinations.
Methods Mol Biol. 2024;2832:3-29. doi: 10.1007/978-1-0716-3973-3_1.
4
Roles of auxin pathways in maize biology.
J Exp Bot. 2023 Dec 1;74(22):6989-6999. doi: 10.1093/jxb/erad297.
6
Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass ().
Front Plant Sci. 2022 Aug 4;13:956410. doi: 10.3389/fpls.2022.956410. eCollection 2022.
7
The Role of Hydrogen Sulfide in Plant Roots during Development and in Response to Abiotic Stress.
Int J Mol Sci. 2022 Jan 18;23(3):1024. doi: 10.3390/ijms23031024.
8
Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture.
Int J Mol Sci. 2021 May 24;22(11):5508. doi: 10.3390/ijms22115508.

本文引用的文献

1
Elucidating the regulation of complex signalling systems in plant cells.
Biochem Soc Trans. 2014 Feb;42(1):219-23. doi: 10.1042/BST20130090.
2
Root systems biology: integrative modeling across scales, from gene regulatory networks to the rhizosphere.
Plant Physiol. 2013 Dec;163(4):1487-503. doi: 10.1104/pp.113.227215. Epub 2013 Oct 18.
3
Polar auxin transport: models and mechanisms.
Development. 2013 Jun;140(11):2253-68. doi: 10.1242/dev.079111.
4
Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root development.
Front Plant Sci. 2013 Apr 5;4:75. doi: 10.3389/fpls.2013.00075. eCollection 2013.
5
Modeling gene expression in time and space.
Annu Rev Biophys. 2013;42:605-27. doi: 10.1146/annurev-biophys-083012-130335.
6
Mathematical modeling of an oscillating gene circuit to unravel the circadian clock network of Arabidopsis thaliana.
Front Plant Sci. 2013 Jan 25;4:3. doi: 10.3389/fpls.2013.00003. eCollection 2013.
8
Hormone symphony during root growth and development.
Dev Dyn. 2012 Dec;241(12):1867-85. doi: 10.1002/dvdy.23878. Epub 2012 Oct 25.
9
The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana.
J Theor Biol. 2013 Jan 21;317:71-86. doi: 10.1016/j.jtbi.2012.08.032. Epub 2012 Sep 29.
10
Hormonal interactions in the regulation of plant development.
Annu Rev Cell Dev Biol. 2012;28:463-87. doi: 10.1146/annurev-cellbio-101011-155741. Epub 2012 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验