Suppr超能文献

不确定性量化在模型可重复性中的重要性。

The importance of uncertainty quantification in model reproducibility.

机构信息

The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK.

College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QE, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200071. doi: 10.1098/rsta.2020.0071. Epub 2021 Mar 29.

Abstract

Many computer models possess high-dimensional input spaces and substantial computational time to produce a single model evaluation. Although such models are often 'deterministic', these models suffer from a wide range of uncertainties. We argue that uncertainty quantification is crucial for computer model validation and reproducibility. We present a statistical framework, termed history matching, for performing global parameter search by comparing model output to the observed data. We employ Gaussian process (GP) emulators to produce fast predictions about model behaviour at the arbitrary input parameter settings allowing output uncertainty distributions to be calculated. History matching identifies sets of input parameters that give rise to acceptable matches between observed data and model output given our representation of uncertainties. Modellers could proceed by simulating computer models' outputs of interest at these identified parameter settings and producing a range of predictions. The variability in model results is crucial for inter-model comparison as well as model development. We illustrate the performance of emulation and history matching on a simple one-dimensional toy model and in application to a climate model. This article is part of the theme issue 'Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification '.

摘要

许多计算机模型具有高维输入空间和大量计算时间来生成单个模型评估。尽管这些模型通常是“确定性”的,但它们存在广泛的不确定性。我们认为不确定性量化对于计算机模型验证和可重复性至关重要。我们提出了一种统计框架,称为历史匹配,通过将模型输出与观测数据进行比较来执行全局参数搜索。我们采用高斯过程 (GP) 仿真器来快速预测模型在任意输入参数设置下的行为,从而计算输出不确定性分布。历史匹配确定了一组输入参数,这些参数在我们表示不确定性的情况下,在观测数据和模型输出之间产生可接受的匹配。建模者可以在这些确定的参数设置下模拟计算机模型的感兴趣输出,并生成一系列预测。模型结果的可变性对于模型之间的比较以及模型开发至关重要。我们在一个简单的一维玩具模型上以及在气候模型的应用中演示了仿真和历史匹配的性能。本文是“计算科学中的可靠性和可重复性:实施验证、验证和不确定性量化”主题问题的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deab/8059558/ac9d5e6bcb75/rsta20200071f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验