Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia.
John Innes Centre, Norwich Research Park, Norwich, UK.
Nat Plants. 2018 Jan;4(1):23-29. doi: 10.1038/s41477-017-0083-8. Epub 2018 Jan 1.
The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
人口增长和环境变化引起了人们对全球粮食安全的极大关注,目前几种重要作物的改良速度不足以满足未来的需求。这种缓慢的改良速度部分归因于作物的长世代时间。在这里,我们提出了一种称为“快速繁殖”的方法,它大大缩短了世代时间,加速了育种和研究计划。快速繁殖可使春小麦(Triticum aestivum)、硬粒小麦(T. durum)、大麦(Hordeum vulgare)、鹰嘴豆(Cicer arietinum)和豌豆(Pisum sativum)每年达到 6 代,油菜(Brassica napus)达到 4 代,而不是在正常温室条件下的 2-3 代。我们证明,在完全封闭、受控环境生长室中的快速繁殖可以加速植物的研究发展,包括对成年植物性状的表型分析、突变体研究和转化。在温室环境中使用补充照明可以通过单粒下降(SSD)快速进行世代循环,并有可能适应更大规模的作物改良计划。通过使用发光二极管(LED)补充照明也可以节省成本。我们设想将快速繁殖与其他现代作物育种技术(包括高通量基因分型、基因组编辑和基因组选择)相结合具有很大的潜力,可以加速作物改良的速度。