Suppr超能文献

一种通过结合局部特征和几何不变量的新型图像配准方法。

A novel image registration approach via combining local features and geometric invariants.

作者信息

Lu Yan, Gao Kun, Zhang Tinghua, Xu Tingfa

机构信息

Key Lab of Photoelectronic Imaging Technology and System, Ministry of Education of China, Beijing Institute of Technology, Beijing, China.

出版信息

PLoS One. 2018 Jan 2;13(1):e0190383. doi: 10.1371/journal.pone.0190383. eCollection 2018.

Abstract

Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points.

摘要

图像配准在许多领域都有广泛应用,但现有方法的适应性有限。这项工作提出了一种适用于各种复杂应用的高精度新型图像配准方法。在此框架下,配准问题分为两个阶段。首先,我们使用改进的面向计算机视觉的快速和旋转简要(ORB)算法检测并描述尺度不变特征点,并提出一种提高特征点匹配性能的简单方法。其次,我们根据特征距离开发了一种新的粗略选择局部约束。有证据表明,现有的基于图像特征的匹配技术对于图像细节稀疏的图像是不够的。然后,我们提出了一种基于几何约束的新型匹配算法,并为所选特征点建立基于几何不变性的局部特征描述。随后,构建一个新的代价函数来评估点之间的相似度并获得精确的匹配对。最后,我们采用渐进样本一致性方法去除错误匹配并计算空间变换参数。在各种复杂图像数据集上的实验结果验证了所提出的方法更稳健,在保留更多高质量特征点的同时显著降低了误匹配率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ce/5749792/f23b9c8bdb9f/pone.0190383.g001.jpg

相似文献

1
A novel image registration approach via combining local features and geometric invariants.
PLoS One. 2018 Jan 2;13(1):e0190383. doi: 10.1371/journal.pone.0190383. eCollection 2018.
2
[Research on non-rigid medical image registration algorithm based on SIFT feature extraction].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010 Aug;27(4):763-8, 784.
3
Fast Automatic Registration of UAV Images via Bidirectional Matching.
Sensors (Basel). 2023 Oct 18;23(20):8566. doi: 10.3390/s23208566.
5
Manifold-based feature point matching for multi-modal image registration.
Int J Med Robot. 2013 Mar;9(1):e10-8. doi: 10.1002/rcs.1465. Epub 2012 Nov 22.
6
Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features.
PLoS One. 2016 Mar 17;11(3):e0149710. doi: 10.1371/journal.pone.0149710. eCollection 2016.
7
Distorted Building Image Matching with Automatic Viewpoint Rectification and Fusion.
Sensors (Basel). 2019 Nov 27;19(23):5205. doi: 10.3390/s19235205.
8
A partial intensity invariant feature descriptor for multimodal retinal image registration.
IEEE Trans Biomed Eng. 2010 Jul;57(7):1707-18. doi: 10.1109/TBME.2010.2042169. Epub 2010 Feb 18.
9
Multi-sensor image registration based on algebraic projective invariants.
Opt Express. 2013 Apr 22;21(8):9824-38. doi: 10.1364/OE.21.009824.
10
Inverse consistent non-rigid image registration based on robust point set matching.
Biomed Eng Online. 2014;13 Suppl 2(Suppl 2):S2. doi: 10.1186/1475-925X-13-S2-S2. Epub 2014 Dec 11.

引用本文的文献

1
Registration of polarimetric images for in vivo skin diagnostics.
J Biomed Opt. 2022 Aug;27(9). doi: 10.1117/1.JBO.27.9.096001.
2
An overview of image registration for aligning mass spectrometry imaging with clinically relevant imaging modalities.
J Mass Spectrom Adv Clin Lab. 2021 Dec 18;23:26-38. doi: 10.1016/j.jmsacl.2021.12.006. eCollection 2022 Jan.
3
Use of Single-Cell -Omic Technologies to Study the Gastrointestinal Tract and Diseases, From Single Cell Identities to Patient Features.
Gastroenterology. 2020 Aug;159(2):453-466.e1. doi: 10.1053/j.gastro.2020.04.073. Epub 2020 May 14.

本文引用的文献

1
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.
Sensors (Basel). 2016 Dec 15;16(12):2139. doi: 10.3390/s16122139.
2
Nonrigid registration of remote sensing images via sparse and dense feature matching.
J Opt Soc Am A Opt Image Sci Vis. 2016 Jul 1;33(7):1313-22. doi: 10.1364/JOSAA.33.001313.
3
Retinal image registration via feature-guided Gaussian mixture model.
J Opt Soc Am A Opt Image Sci Vis. 2016 Jul 1;33(7):1267-76. doi: 10.1364/JOSAA.33.001267.
4
Possibility Study of Scale Invariant Feature Transform (SIFT) Algorithm Application to Spine Magnetic Resonance Imaging.
PLoS One. 2016 Apr 11;11(4):e0153043. doi: 10.1371/journal.pone.0153043. eCollection 2016.
5
Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features.
PLoS One. 2016 Mar 17;11(3):e0149710. doi: 10.1371/journal.pone.0149710. eCollection 2016.
6
Multi-class remote sensing object recognition based on discriminative sparse representation.
Appl Opt. 2016 Feb 20;55(6):1381-94. doi: 10.1364/AO.55.001381.
7
Compounding local invariant features and global deformable geometry for medical image registration.
PLoS One. 2014 Aug 28;9(8):e105815. doi: 10.1371/journal.pone.0105815. eCollection 2014.
8
Design of an image restoration algorithm for the TOMBO imaging system.
J Opt Soc Am A Opt Image Sci Vis. 2013 Jun 1;30(6):1193-204. doi: 10.1364/JOSAA.30.001193.
9
Invariant matching method for different viewpoint angle images.
Appl Opt. 2013 Jan 1;52(1):96-104. doi: 10.1364/ao.52.000096.
10
Medical image registration: a review.
Comput Methods Biomech Biomed Engin. 2014;17(2):73-93. doi: 10.1080/10255842.2012.670855. Epub 2012 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验