Suppr超能文献

基于稀疏和密集特征匹配的遥感图像非刚性配准

Nonrigid registration of remote sensing images via sparse and dense feature matching.

作者信息

Chen Jun, Luo Linbo, Liu Chengyin, Yu Jin-Gang, Ma Jiayi

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2016 Jul 1;33(7):1313-22. doi: 10.1364/JOSAA.33.001313.

Abstract

In this paper, we propose a novel formulation for building pixelwise alignments between remote sensing images under nonrigid transformation based on matching both sparsely and densely sampled features. Our formulation contains two coupling variables: the nonrigid geometric transformation and the discrete dense flow field. To match sparse features, we fit a geometric transformation specified in a reproducing kernel Hilbert space and impose a locally linear constraint to regularize the transformation. To match dense features, we compute a dense flow field by using a formulation analogous to scale invariant feature transform (SIFT) flow which allows nonrigid matching across different scene appearances. An additional term is introduced to ensure the coherence between the two variables, and we alternatively solve for one variable under the assumption that the other is known. Extensive experiments on both synthetic and real remote sensing images demonstrate that our approach greatly outperforms state-of-the-art methods, particularly when the data contain severe degradations.

摘要

在本文中,我们提出了一种新颖的方法,用于在非刚性变换下基于稀疏和密集采样特征的匹配来构建遥感图像之间的逐像素对齐。我们的方法包含两个耦合变量:非刚性几何变换和离散密集流场。为了匹配稀疏特征,我们拟合一个在再生核希尔伯特空间中指定的几何变换,并施加局部线性约束来正则化该变换。为了匹配密集特征,我们通过使用一种类似于尺度不变特征变换(SIFT)流的方法来计算密集流场,该方法允许在不同场景外观之间进行非刚性匹配。引入了一个额外的项来确保两个变量之间的一致性,并且我们在假设另一个变量已知的情况下交替求解一个变量。在合成和真实遥感图像上进行的大量实验表明,我们的方法大大优于现有方法,特别是当数据包含严重退化时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验