Suppr超能文献

一种用于多模态视网膜图像配准的局部强度不变特征描述符。

A partial intensity invariant feature descriptor for multimodal retinal image registration.

机构信息

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

IEEE Trans Biomed Eng. 2010 Jul;57(7):1707-18. doi: 10.1109/TBME.2010.2042169. Epub 2010 Feb 18.

Abstract

Detection of vascular bifurcations is a challenging task in multimodal retinal image registration. Existing algorithms based on bifurcations usually fail in correctly aligning poor quality retinal image pairs. To solve this problem, we propose a novel highly distinctive local feature descriptor named partial intensity invariant feature descriptor (PIIFD) and describe a robust automatic retinal image registration framework named Harris-PIIFD. PIIFD is invariant to image rotation, partially invariant to image intensity, affine transformation, and viewpoint/perspective change. Our Harris-PIIFD framework consists of four steps. First, corner points are used as control point candidates instead of bifurcations since corner points are sufficient and uniformly distributed across the image domain. Second, PIIFDs are extracted for all corner points, and a bilateral matching technique is applied to identify corresponding PIIFDs matches between image pairs. Third, incorrect matches are removed and inaccurate matches are refined. Finally, an adaptive transformation is used to register the image pairs. PIIFD is so distinctive that it can be correctly identified even in nonvascular areas. When tested on 168 pairs of multimodal retinal images, the Harris-PIIFD far outperforms existing algorithms in terms of robustness, accuracy, and computational efficiency.

摘要

血管分叉的检测是多模态视网膜图像配准中的一项具有挑战性的任务。现有的基于分叉的算法通常无法正确对齐质量较差的视网膜图像对。为了解决这个问题,我们提出了一种新的高度独特的局部特征描述符,名为部分强度不变特征描述符(PIIFD),并描述了一种名为 Harris-PIIFD 的强大的自动视网膜图像配准框架。PIIFD 对图像旋转、图像强度、仿射变换和视点/透视变化具有部分不变性。我们的 Harris-PIIFD 框架由四个步骤组成。首先,由于角点在图像域中是充足且均匀分布的,因此使用角点作为控制点候选,而不是分叉点。其次,为所有角点提取 PIIFD,并应用双边匹配技术来识别图像对之间的对应 PIIFD 匹配。第三,去除错误匹配并细化不准确的匹配。最后,使用自适应变换来注册图像对。PIIFD 非常独特,即使在非血管区域也能正确识别。在 168 对多模态视网膜图像上进行测试时,Harris-PIIFD 在鲁棒性、准确性和计算效率方面均优于现有算法。

相似文献

2
3
Hybrid retinal image registration.混合视网膜图像配准。
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):129-42. doi: 10.1109/titb.2005.856859.
6
Salient feature region: a new method for retinal image registration.显著特征区域:一种用于视网膜图像配准的新方法。
IEEE Trans Inf Technol Biomed. 2011 Mar;15(2):221-32. doi: 10.1109/TITB.2010.2091145. Epub 2010 Dec 6.
10
Feature-Based Retinal Image Registration Using D-Saddle Feature.基于 D-鞍点特征的视网膜图像配准
J Healthc Eng. 2017;2017:1489524. doi: 10.1155/2017/1489524. Epub 2017 Oct 24.

引用本文的文献

6
Computational single fundus image restoration techniques: a review.计算单眼底图像恢复技术综述
Front Ophthalmol (Lausanne). 2024 Jun 12;4:1332197. doi: 10.3389/fopht.2024.1332197. eCollection 2024.

本文引用的文献

2
4
Feature-based registration of retinal images.基于特征的视网膜图像配准。
IEEE Trans Med Imaging. 1987;6(3):272-8. doi: 10.1109/TMI.1987.4307837.
8
Retina mosaicing using local features.使用局部特征的视网膜图像拼接
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):185-92. doi: 10.1007/11866763_23.
9
Hybrid retinal image registration.混合视网膜图像配准。
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):129-42. doi: 10.1109/titb.2005.856859.
10
Performance evaluation of local descriptors.局部描述符的性能评估
IEEE Trans Pattern Anal Mach Intell. 2005 Oct;27(10):1615-30. doi: 10.1109/TPAMI.2005.188.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验