Suppr超能文献

一种用于多模态视网膜图像配准的局部强度不变特征描述符。

A partial intensity invariant feature descriptor for multimodal retinal image registration.

机构信息

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

IEEE Trans Biomed Eng. 2010 Jul;57(7):1707-18. doi: 10.1109/TBME.2010.2042169. Epub 2010 Feb 18.

Abstract

Detection of vascular bifurcations is a challenging task in multimodal retinal image registration. Existing algorithms based on bifurcations usually fail in correctly aligning poor quality retinal image pairs. To solve this problem, we propose a novel highly distinctive local feature descriptor named partial intensity invariant feature descriptor (PIIFD) and describe a robust automatic retinal image registration framework named Harris-PIIFD. PIIFD is invariant to image rotation, partially invariant to image intensity, affine transformation, and viewpoint/perspective change. Our Harris-PIIFD framework consists of four steps. First, corner points are used as control point candidates instead of bifurcations since corner points are sufficient and uniformly distributed across the image domain. Second, PIIFDs are extracted for all corner points, and a bilateral matching technique is applied to identify corresponding PIIFDs matches between image pairs. Third, incorrect matches are removed and inaccurate matches are refined. Finally, an adaptive transformation is used to register the image pairs. PIIFD is so distinctive that it can be correctly identified even in nonvascular areas. When tested on 168 pairs of multimodal retinal images, the Harris-PIIFD far outperforms existing algorithms in terms of robustness, accuracy, and computational efficiency.

摘要

血管分叉的检测是多模态视网膜图像配准中的一项具有挑战性的任务。现有的基于分叉的算法通常无法正确对齐质量较差的视网膜图像对。为了解决这个问题,我们提出了一种新的高度独特的局部特征描述符,名为部分强度不变特征描述符(PIIFD),并描述了一种名为 Harris-PIIFD 的强大的自动视网膜图像配准框架。PIIFD 对图像旋转、图像强度、仿射变换和视点/透视变化具有部分不变性。我们的 Harris-PIIFD 框架由四个步骤组成。首先,由于角点在图像域中是充足且均匀分布的,因此使用角点作为控制点候选,而不是分叉点。其次,为所有角点提取 PIIFD,并应用双边匹配技术来识别图像对之间的对应 PIIFD 匹配。第三,去除错误匹配并细化不准确的匹配。最后,使用自适应变换来注册图像对。PIIFD 非常独特,即使在非血管区域也能正确识别。在 168 对多模态视网膜图像上进行测试时,Harris-PIIFD 在鲁棒性、准确性和计算效率方面均优于现有算法。

相似文献

1
A partial intensity invariant feature descriptor for multimodal retinal image registration.
IEEE Trans Biomed Eng. 2010 Jul;57(7):1707-18. doi: 10.1109/TBME.2010.2042169. Epub 2010 Feb 18.
2
A novel registration method for retinal images based on local features.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2242-5. doi: 10.1109/IEMBS.2008.4649642.
3
Hybrid retinal image registration.
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):129-42. doi: 10.1109/titb.2005.856859.
4
Multimodal registration of retinal images using self organizing maps.
IEEE Trans Med Imaging. 2004 Dec;23(12):1557-63. doi: 10.1109/TMI.2004.836547.
5
RERBEE: robust efficient registration via bifurcations and elongated elements applied to retinal fluorescein angiogram sequences.
IEEE Trans Med Imaging. 2012 Jan;31(1):140-50. doi: 10.1109/TMI.2011.2167517. Epub 2011 Sep 8.
6
Salient feature region: a new method for retinal image registration.
IEEE Trans Inf Technol Biomed. 2011 Mar;15(2):221-32. doi: 10.1109/TITB.2010.2091145. Epub 2010 Dec 6.
7
Elastic registration for retinal images based on reconstructed vascular trees.
IEEE Trans Biomed Eng. 2006 Jun;53(6):1183-7. doi: 10.1109/TBME.2005.863927.
8
The dual-bootstrap iterative closest point algorithm with application to retinal image registration.
IEEE Trans Med Imaging. 2003 Nov;22(11):1379-94. doi: 10.1109/TMI.2003.819276.
10
Feature-Based Retinal Image Registration Using D-Saddle Feature.
J Healthc Eng. 2017;2017:1489524. doi: 10.1155/2017/1489524. Epub 2017 Oct 24.

引用本文的文献

1
User-Assisted Approach for Accurate Nonrigid Registration of Images and Traces.
bioRxiv. 2025 Feb 2:2025.01.29.635549. doi: 10.1101/2025.01.29.635549.
2
EyeLiner: A Deep Learning Pipeline for Longitudinal Image Registration Using Fundus Landmarks.
Ophthalmol Sci. 2024 Nov 28;5(2):100664. doi: 10.1016/j.xops.2024.100664. eCollection 2025 Mar-Apr.
5
Medical image registration and its application in retinal images: a review.
Vis Comput Ind Biomed Art. 2024 Aug 21;7(1):21. doi: 10.1186/s42492-024-00173-8.
6
Computational single fundus image restoration techniques: a review.
Front Ophthalmol (Lausanne). 2024 Jun 12;4:1332197. doi: 10.3389/fopht.2024.1332197. eCollection 2024.
7
MEMO: dataset and methods for robust multimodal retinal image registration with large or small vessel density differences.
Biomed Opt Express. 2024 Apr 30;15(5):3457-3479. doi: 10.1364/BOE.516481. eCollection 2024 May 1.
8
A Straightforward Bifurcation Pattern-Based Fundus Image Registration Method.
Sensors (Basel). 2023 Sep 11;23(18):7809. doi: 10.3390/s23187809.
9
Joint keypoint detection and description network for color fundus image registration.
Quant Imaging Med Surg. 2023 Jul 1;13(7):4540-4562. doi: 10.21037/qims-23-4. Epub 2023 May 26.
10
INSPIRE: Intensity and spatial information-based deformable image registration.
PLoS One. 2023 Mar 3;18(3):e0282432. doi: 10.1371/journal.pone.0282432. eCollection 2023.

本文引用的文献

1
The edge-driven dual-bootstrap iterative closest point algorithm for registration of multimodal fluorescein angiogram sequence.
IEEE Trans Med Imaging. 2010 Mar;29(3):636-49. doi: 10.1109/TMI.2009.2030324. Epub 2009 Aug 25.
2
A novel registration method for retinal images based on local features.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2242-5. doi: 10.1109/IEMBS.2008.4649642.
3
Optimization of mutual information for multiresolution image registration.
IEEE Trans Image Process. 2000;9(12):2083-99. doi: 10.1109/83.887976.
4
Feature-based registration of retinal images.
IEEE Trans Med Imaging. 1987;6(3):272-8. doi: 10.1109/TMI.1987.4307837.
5
The detection and quantification of retinopathy using digital angiograms.
IEEE Trans Med Imaging. 1994;13(4):619-26. doi: 10.1109/42.363106.
6
Efficient least squares multimodal registration with a globally exhaustive alignment search.
IEEE Trans Image Process. 2007 Oct;16(10):2526-34. doi: 10.1109/tip.2007.904956.
7
Registration of challenging image pairs: initialization, estimation, and decision.
IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1973-89. doi: 10.1109/TPAMI.2007.1116.
8
Retina mosaicing using local features.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):185-92. doi: 10.1007/11866763_23.
9
Hybrid retinal image registration.
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):129-42. doi: 10.1109/titb.2005.856859.
10
Performance evaluation of local descriptors.
IEEE Trans Pattern Anal Mach Intell. 2005 Oct;27(10):1615-30. doi: 10.1109/TPAMI.2005.188.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验