Suppr超能文献

用于急性腹痛的诊断机器学习模型:迈向医学生的电子学习工具。

Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students.

作者信息

Khumrin Piyapong, Ryan Anna, Judd Terry, Verspoor Karin

机构信息

Dept of Computing and Information Systems, School of Engineering, University of Melbourne, Melbourne, Australia.

Dept of Medical Education, Melbourne Medical School, University of Melbourne, Melbourne, Australia.

出版信息

Stud Health Technol Inform. 2017;245:447-451.

Abstract

Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.

摘要

计算机辅助学习系统(电子学习系统)可以帮助医学生在诊断推理和决策方面积累更多经验。在此背景下,提供符合学生需求的反馈(即个性化反馈)既至关重要又具有挑战性。在本文中,我们描述了一种机器学习模型的开发,以支持医学生的诊断决策。机器学习模型在208例腹痛临床病例上进行训练,以预测五种诊断。我们评估了这些模型中哪些可能最有效地用于电子学习工具,使学生能够与虚拟患者进行互动。更广泛的目标是利用这些模型根据学生请求的特定患者信息及其活跃的诊断假设生成个性化反馈。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验