Suppr超能文献

用于模拟细胞内运输动态相互作用的因子和网络。

Agents and networks to model the dynamic interactions of intracellular transport.

作者信息

Mayorga Luis S, Verma Meghna, Hontecillas Raquel, Hoops Stefan, Bassaganya-Riera Josep

机构信息

IHEM (Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina.

Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.

出版信息

Cell Logist. 2017 Nov 29;7(4):e1392401. doi: 10.1080/21592799.2017.1392401. eCollection 2017.

Abstract

Cell biology is increasingly evolving to become a more formal and quantitative science. The field of intracellular transport is no exception. However, it is extremely challenging to formulate mathematical and computational models for processes that involve dynamic structures that continuously change their shape, position and composition, leading to information transfer and functional outcomes. The two major strategies employed to represent intracellular trafficking are based on "ordinary differential equations" and "agent-" based modeling. Both approaches have advantages and drawbacks. Combinations of both modeling strategies have promising characteristics to generate meaningful simulations for intracellular transport and allow the formulation of new hypotheses and provide new insights. In the near future, cell biologists will encounter and hopefully overcome the challenge of translating descriptive cartoon representations of biological systems into mathematical network models.

摘要

细胞生物学正日益发展成为一门更加形式化和定量的科学。细胞内运输领域也不例外。然而,为涉及动态结构(其形状、位置和组成不断变化,从而导致信息传递和功能结果)的过程制定数学和计算模型极具挑战性。用于表示细胞内运输的两种主要策略基于“常微分方程”和“基于主体”的建模。这两种方法都有优缺点。两种建模策略的结合具有产生有意义的细胞内运输模拟、提出新假设并提供新见解的良好特性。在不久的将来,细胞生物学家将面临并有望克服将生物系统的描述性卡通表示转化为数学网络模型这一挑战。

相似文献

2
From cartoons to quantitative models in Golgi transport.从卡通到高尔基体运输的定量模型。
Biol Cell. 2021 Mar;113(3):146-164. doi: 10.1111/boc.202000107. Epub 2020 Dec 16.
6
Introduction: Cancer Gene Networks.引言:癌症基因网络
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.

本文引用的文献

1
NLRX1 Regulates Effector and Metabolic Functions of CD4 T Cells.NLRX1调节CD4 T细胞的效应和代谢功能。
J Immunol. 2017 Mar 15;198(6):2260-2268. doi: 10.4049/jimmunol.1601547. Epub 2017 Feb 3.
4
Solving Immunology?解决免疫学问题?
Trends Immunol. 2017 Feb;38(2):116-127. doi: 10.1016/j.it.2016.11.006. Epub 2016 Dec 13.
8
ENISI SDE: A New Web-Based Tool for Modeling Stochastic Processes.ENISI SDE:一种用于随机过程建模的新型基于网络的工具。
IEEE/ACM Trans Comput Biol Bioinform. 2015 Mar-Apr;12(2):289-97. doi: 10.1109/TCBB.2014.2351823.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验