Suppr超能文献

采用顶空-气相色谱离子迁移谱法(HS-GC-IMS)进行挥发性化合物指纹分析,作为评估蜂蜜真实性的 NMR 图谱分析的台式替代方法。

Volatile-Compound Fingerprinting by Headspace-Gas-Chromatography Ion-Mobility Spectrometry (HS-GC-IMS) as a Benchtop Alternative to H NMR Profiling for Assessment of the Authenticity of Honey.

机构信息

Institute for Instrumental Analytics and Bioanalysis, Mannheim University of Applied Sciences , 68163 Mannheim, Germany.

Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , 20146 Hamburg, Germany.

出版信息

Anal Chem. 2018 Feb 6;90(3):1777-1785. doi: 10.1021/acs.analchem.7b03748. Epub 2018 Jan 10.

Abstract

This work describes a simple approach for the untargeted profiling of volatile compounds for the authentication of the botanical origins of honey based on resolution-optimized HS-GC-IMS combined with optimized chemometric techniques, namely PCA, LDA, and kNN. A direct comparison of the PCA-LDA models between the HS-GC-IMS and H NMR data demonstrated that HS-GC-IMS profiling could be used as a complementary tool to NMR-based profiling of honey samples. Whereas NMR profiling still requires comparatively precise sample preparation, pH adjustment in particular, HS-GC-IMS fingerprinting may be considered an alternative approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. It was demonstrated that all tested honey samples could be distinguished on the basis of their botanical origins. Loading plots revealed the volatile compounds responsible for the differences among the monofloral honeys. The HS-GC-IMS-based PCA-LDA model was composed of two linear functions of discrimination and 10 selected PCs that discriminated canola, acacia, and honeydew honeys with a predictive accuracy of 98.6%. Application of the LDA model to an external test set of 10 authentic honeys clearly proved the high predictive ability of the model by correctly classifying them into three variety groups with 100% correct classifications. The constructed model presents a simple and efficient method of analysis and may serve as a basis for the authentication of other food types.

摘要

本工作描述了一种基于优化分离度的 HS-GC-IMS 与优化化学计量学技术(主成分分析(PCA)、线性判别分析(LDA)和 kNN)联用的、用于鉴定蜂蜜植物源性的挥发性化合物非靶向分析方法。HS-GC-IMS 和 1 H NMR 数据的 PCA-LDA 模型的直接比较表明,HS-GC-IMS 分析可作为基于 NMR 的蜂蜜样品分析的补充工具。虽然 NMR 分析仍需要相对精确的样品制备,特别是 pH 值调整,但 HS-GC-IMS 指纹图谱分析可被视为一种替代方法,用于真正全自动、经济高效、特别是高灵敏度的方法。结果表明,所有测试的蜂蜜样品均可基于其植物源性进行区分。加载图揭示了导致单花蜜之间差异的挥发性化合物。基于 HS-GC-IMS 的 PCA-LDA 模型由两个判别线性函数和 10 个选定的 PCs 组成,可区分油菜、刺槐和甘露蜜,预测准确率为 98.6%。LDA 模型应用于 10 个真实蜂蜜的外部测试集,通过将其正确分类为 3 个品种组,实现了 100%的正确分类,明确证明了模型的高预测能力。所构建的模型提供了一种简单有效的分析方法,可作为其他食品类型鉴定的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验