Suppr超能文献

采用快速气相色谱电子鼻、顶空-气相色谱-离子迁移谱和顶空固相微萃取-气相色谱-质谱联用及多元统计分析方法对三种物种花蕾中的挥发性化合物进行比较分析。

Comparative Analysis of Volatile Compounds in the Flower Buds of Three Species Using Fast Gas Chromatography Electronic Nose, Headspace-Gas Chromatography-Ion Mobility Spectrometry, and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis.

机构信息

College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.

Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.

出版信息

Molecules. 2024 Jan 26;29(3):602. doi: 10.3390/molecules29030602.

Abstract

The flower buds of three species (PGF: ; PQF: ; PNF: ) widely consumed as health tea are easily confused in market circulation. We aimed to develop a green, fast, and easy analysis strategy to distinguish PGF, PQF, and PNF. In this work, fast gas chromatography electronic nose (fast GC e-nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were utilized to comprehensively analyze the volatile organic components (VOCs) of three flowers. Meanwhile, a principal component analysis (PCA) and heatmap were applied to distinguish the VOCs identified in PGF, PQF, and PNF. A random forest (RF) analysis was used to screen key factors affecting the discrimination. As a result, 39, 68, and 78 VOCs were identified in three flowers using fast GC e-nose, HS-GC-IMS, and HS-SPME-GC-MS. Nine VOCs were selected as potential chemical markers based on a model of RF for distinguishing these three species. Conclusively, a complete VOC analysis strategy was created to provide a methodological reference for the rapid, simple, and environmentally friendly detection and identification of food products (tea, oil, honey, etc.) and herbs with flavor characteristics and to provide a basis for further specification of their quality and base sources.

摘要

三种(PGF:;PQF:;PNF:)作为保健茶广泛食用的花蕾在市场流通中很容易混淆。我们旨在开发一种绿色、快速、简便的分析策略来区分 PGF、PQF 和 PNF。在这项工作中,我们利用快速气相色谱电子鼻(fast GC e-nose)、顶空气相色谱-离子迁移谱(HS-GC-IMS)和顶空固相微萃取-气相色谱-质谱联用(HS-SPME-GC-MS)综合分析了三种花的挥发性有机成分(VOCs)。同时,应用主成分分析(PCA)和热图来区分 PGF、PQF 和 PNF 中鉴定的 VOCs。随机森林(RF)分析用于筛选影响区分的关键因素。结果,使用 fast GC e-nose、HS-GC-IMS 和 HS-SPME-GC-MS 分别在三种花中鉴定出 39、68 和 78 种 VOCs。基于 RF 模型,选择了 9 种 VOC 作为区分这三种物种的潜在化学标志物。结论,创建了完整的 VOC 分析策略,为快速、简单、环保的检测和识别具有风味特征的食品产品(茶、油、蜂蜜等)和草药提供了方法学参考,并为进一步规范其质量和基础来源提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471d/10856343/baac2a11e65b/molecules-29-00602-g001.jpg

相似文献

本文引用的文献

3
Electronic nose for detection of food adulteration: a review.用于检测食品掺假的电子鼻:综述
J Food Sci Technol. 2022 Mar;59(3):846-858. doi: 10.1007/s13197-021-05057-w. Epub 2021 Mar 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验