Suppr超能文献

多晶金属纳米线中率相关延性-脆性失效转变的原子级模拟。

Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires.

机构信息

Department of Mechanical Engineering, Boston University , Boston, Massachusetts 02215, United States.

Department of Nuclear Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

出版信息

Nano Lett. 2018 Feb 14;18(2):1296-1304. doi: 10.1021/acs.nanolett.7b04972. Epub 2018 Jan 22.

Abstract

The mechanical properties and plastic deformation mechanisms of metal nanowires have been studied intensely for many years. One of the important yet unresolved challenges in this field is to bridge the gap in properties and deformation mechanisms reported for slow strain rate experiments (∼10 s), and high strain rate molecular dynamics (MD) simulations (∼10 s) such that a complete understanding of strain rate effects on mechanical deformation and plasticity can be obtained. In this work, we use long time scale atomistic modeling based on potential energy surface exploration to elucidate the atomistic mechanisms governing a strain-rate-dependent incipient plasticity and yielding transition for face centered cubic (FCC) copper and silver nanowires. The transition occurs for both metals with both pristine and rough surfaces for all computationally accessible diameters (<10 nm). We find that the yield transition is induced by a transition in the incipient plastic event from Shockley partials nucleated on primary slip systems at MD strain rates to the nucleation of planar defects on non-Schmid slip planes at experimental strain rates, where multiple twin boundaries and planar stacking faults appear in copper and silver, respectively. Finally, we demonstrate that, at experimental strain rates, a ductile-to-brittle transition in failure mode similar to previous experimental studies on bicrystalline silver nanowires is observed, which is driven by differences in dislocation activity and grain boundary mobility as compared to the high strain rate case.

摘要

多年来,人们对金属纳米线的力学性能和塑性变形机制进行了深入研究。该领域的一个重要但尚未解决的挑战是弥合慢应变速率实验(约 10 s)和高应变速率分子动力学(MD)模拟(约 10 s)之间报道的性能和变形机制之间的差距,以便对机械变形和塑性的应变速率效应有一个完整的理解。在这项工作中,我们使用基于势能面探索的长时间尺度原子模拟来阐明控制面心立方(FCC)铜和银纳米线应变率相关初始塑性和屈服转变的原子机制。对于所有可计算的直径(<10nm),两种金属的原始和粗糙表面都发生了这种转变。我们发现,屈服转变是由初始塑性事件从 MD 应变速率下初级滑移系上的 Shockley 部分的成核转变为实验应变速率下非 Schmid 滑移面上的平面缺陷成核引起的,在铜和银中分别出现了多个孪晶界和平面堆垛层错。最后,我们证明,在实验应变速率下,与之前关于双晶银纳米线的实验研究类似,观察到失效模式从韧性到脆性的转变,这是由位错活性和晶界迁移率的差异驱动的,与高应变速率情况相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验