Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
School of Biological Sciences, Bangor University, Brambell Laboratories, Bangor, Gwynedd, UK.
Proc Biol Sci. 2018 Jan 10;285(1870). doi: 10.1098/rspb.2017.2037.
Multi-omic approaches promise to supply the power to detect genes underlying disease and fitness-related phenotypes. Optimal use of the resulting profusion of data requires detailed investigation of individual candidate genes, a challenging proposition. Here, we combine transcriptomic and genomic data with molecular modelling of candidate enzymes to characterize the evolutionary history and function of the serine protease cocoonase. butterflies possess the unique ability to feed on pollen; recent work has identified as a candidate gene in pollen digestion. was first described in moths, where it aids in eclosure from the cocoon and is present as a single copy gene. In heliconiine butterflies it is duplicated and highly expressed in the mouthparts of adults. At least six copies of are present in and copy number varies across sub-populations. Most genes are under purifying selection, however branch-site analyses suggest genes may have evolved under episodic diversifying selection. Molecular modelling of cocoonase proteins and examination of their predicted structures revealed that the active site region of each type has a similar structure to trypsin, with the same predicted substrate specificity across types. Variation among heliconiine cocoonases instead lies in the outward-facing residues involved in solvent interaction. Thus, the neofunctionalization of duplicates appears to have resulted from the need for these serine proteases to operate in diverse biochemical environments. We suggest that may have played a buffering role in feeding during the diversification of across the neotropics by enabling these butterflies to digest protein from a range of biochemical milieux.
多组学方法有望提供检测疾病和适应相关表型相关基因的能力。要优化利用由此产生的大量数据,需要详细研究单个候选基因,这是一个具有挑战性的命题。在这里,我们将转录组和基因组数据与候选酶的分子建模相结合,以描述丝氨酸蛋白酶茧酶的进化历史和功能。蝴蝶具有独特的能力,可以以花粉为食;最近的研究已经确定 是花粉消化的候选基因。最初在鳞翅目昆虫中描述,在那里它有助于从茧中孵化,并作为单个拷贝基因存在。在天蚕科蝴蝶中,它被复制并在成虫的口器中高度表达。在 中至少存在 6 个 拷贝,并且拷贝数在 亚群中有所不同。大多数 基因受到纯化选择的限制,但是分支位点分析表明 基因可能在间歇性多样化选择下进化。茧酶蛋白的分子建模和对其预测结构的检查表明,每种类型的活性位点区域都具有与胰蛋白酶相似的结构,并且在不同类型之间具有相同的预测底物特异性。天蚕科茧酶的变异在于参与溶剂相互作用的外向残基。因此, 的新功能化似乎是由于这些丝氨酸蛋白酶需要在不同的生化环境中发挥作用,导致了 重复的出现。我们认为, 在热带地区的蝴蝶多样化过程中,通过使这些蝴蝶能够消化来自多种生化环境的蛋白质,可能在进食过程中发挥了缓冲作用。