Ben-Ami Frida
School of Zoology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel.
Ecol Evol. 2017 Nov 17;7(24):11157-11166. doi: 10.1002/ece3.3532. eCollection 2017 Dec.
Parasite virulence is a leading theme in evolutionary biology. Modeling the course of virulence evolution holds the promise of providing practical insights into the management of infectious diseases and the implementation of vaccination strategies. A key element of virulence modeling is a tradeoff between parasite transmission rate and host lifespan. This assumption is crucial for predicting the level of optimal virulence. Here, I test this assumption using the water flea and its castrating and obligate-killing bacterium . I found that the virulence-transmission relationship holds under diverse epidemiological and ecological conditions. In particular, parasite genotype, absolute and relative parasite dose, and within-host competition in multiple infections did not significantly affect the observed trend. Interestingly, the relationship between virulence and parasite transmission in this system is best explained by a model that includes a cubic term. Under this relationship, parasite transmission initially peaks and saturates at an intermediate level of virulence, but then it further increases as virulence decreases, surpassing the previous peak. My findings also highlight the problem of using parasite-induced host mortality as a "one-size-fits-all" measure of virulence for horizontally transmitted parasites, without considering the onset and duration of parasite transmission as well as other equally virulent effects of parasites (e.g., host castration). Therefore, mathematical models may be required to predict whether these particular characteristics of horizontally transmitted parasites can direct virulence evolution into directions not envisaged by existing models.
寄生虫毒力是进化生物学中的一个重要主题。对毒力进化过程进行建模有望为传染病管理和疫苗接种策略的实施提供切实可行的见解。毒力建模的一个关键要素是寄生虫传播率与宿主寿命之间的权衡。这一假设对于预测最佳毒力水平至关重要。在此,我利用水蚤及其阉割和专性致死细菌对这一假设进行了检验。我发现,在不同的流行病学和生态条件下,毒力与传播之间的关系依然成立。特别是,寄生虫基因型、绝对和相对寄生虫剂量以及多重感染中的宿主体内竞争并未显著影响观察到的趋势。有趣的是,该系统中毒力与寄生虫传播之间的关系最好用一个包含三次项的模型来解释。在这种关系下,寄生虫传播最初在中等毒力水平达到峰值并趋于饱和,但随后随着毒力降低而进一步增加,超过了先前的峰值。我的研究结果还凸显了一个问题,即对于水平传播的寄生虫,在不考虑寄生虫传播的起始和持续时间以及寄生虫的其他同等毒力效应(如宿主阉割)的情况下,将寄生虫诱导的宿主死亡用作毒力的“一刀切”衡量标准。因此,可能需要数学模型来预测水平传播寄生虫的这些特殊特征是否会将毒力进化导向现有模型未设想的方向。