Suppr超能文献

没食子酸辅助合成均匀锚定在多孔氮掺杂还原氧化石墨烯上的钯作为微生物燃料电池的高效电催化剂。

Gallic acid-assisted synthesis of Pd uniformly anchored on porous N-rGO as efficient electrocatalyst for microbial fuel cells.

作者信息

Wu Xiao-Tong, Li Jie-Cheng, Pan Qiu-Ren, Li Nan, Liu Zhao-Qing

机构信息

School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Environmentally Functional Materials and Technology/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.

出版信息

Dalton Trans. 2018 Jan 30;47(5):1442-1450. doi: 10.1039/c7dt04063f.

Abstract

The sluggish kinetic rate-limiting oxygen reduction reaction (ORR) at the cathode remains the foremost issue hindering the commercialization of microbial fuel cells (MFCs). Utilization of the effect of micromolecule conjugation and the synergistic effect between Pd nanoparticles and N-rGO (nitrogen-doped reduced graphene oxide) to stabilize a precious metal onto carbon materials is a promising strategy to design and synthesize highly efficient cathode catalysts. In this study, gallic acid is used to facilitate the coupling of palladium (Pd) with N-rGO to form GN@Pd-GA via a simple hydrothermal process. Notably, the as-synthesized GN@Pd-GA as a cathode catalyst shows an approximately direct four-electron feature and demonstrates a high ORR performance in 0.1 M KOH. Furthermore, the stability and methanol tolerance of GN@Pd-GA are superior to those of the commercial Pt/C catalysts. In addition, a maximum power density of 391.06 ± 0.2 mW m of MFCs equipped with GN@Pd-GA was obtained, which was 96.2% of the power density of MFCs equipped with a commercial Pt/C catalyst.

摘要

阴极处缓慢的动力学限速氧还原反应(ORR)仍然是阻碍微生物燃料电池(MFC)商业化的首要问题。利用小分子共轭效应以及钯纳米颗粒与氮掺杂还原氧化石墨烯(N-rGO)之间的协同效应,将贵金属稳定在碳材料上,是设计和合成高效阴极催化剂的一种有前景的策略。在本研究中,没食子酸用于促进钯(Pd)与N-rGO的偶联,通过简单的水热过程形成GN@Pd-GA。值得注意的是,所合成的GN@Pd-GA作为阴极催化剂表现出近似直接的四电子特征,并在0.1 M KOH中展现出高ORR性能。此外,GN@Pd-GA的稳定性和甲醇耐受性优于商业Pt/C催化剂。此外,配备GN@Pd-GA的MFC的最大功率密度达到391.06±0.2 mW m,为配备商业Pt/C催化剂的MFC功率密度的96.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验