Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea.
School of Chemical and Biological Engineering, Seoul National University (SNU) , Seoul 08826, Republic of Korea.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3562-3570. doi: 10.1021/acsami.7b16077. Epub 2018 Jan 19.
Although sodium ion batteries (NIBs) have gained wide interest, their poor energy density poses a serious challenge for their practical applications. Therefore, high-energy-density cathode materials are required for NIBs to enable the utilization of a large amount of reversible Na ions. This study presents a P2-type NaCoTiO (x < 0.2) cathode with an extended potential range higher than 4.4 V to present a high specific capacity of 166 mAh g. A group of P2-type cathodes containing various amounts of Ti is prepared using a facile synthetic method. These cathodes show different behaviors of the Na/vacancy ordering. NaCoO suffers severe capacity loss at high voltages due to irreversible structure changes causing serious polarization, while the Ti-substituted cathodes have long credible cycleability as well as high energy. In particular, NaCoTiO exhibits excellent capacity retention (115 mAh g) even after 100 cycles, whereas NaCoO exhibits negligible capacity retention (<10 mAh g) at 4.5 V cutoff conditions. NaCoTiO also exhibits outstanding rate capabilities of 108 mAh g at a current density of 1000 mA g (7.4 C). Increased sodium diffusion kinetics from mitigated Na/vacancy ordering, which allows high Na utilization, are investigated to find in detail the mechanism of the improvement by combining systematic analyses comprising TEM, in situ XRD, and electrochemical methods.
尽管钠离子电池(NIBs)引起了广泛的关注,但它们能量密度低的问题严重限制了其实际应用。因此,需要高能密度的正极材料来应用大量可反复嵌入脱出的钠离子。本研究提出了一种 P2 型 NaCoTiO(x < 0.2)正极材料,其具有扩展的 4.4V 以上高电压平台,可提供 166 mAh g 的高比容量。通过简便的合成方法制备了一系列具有不同 Ti 含量的 P2 型正极材料,这些正极材料表现出不同的 Na/空位有序化行为。NaCoO 在高电压下由于不可逆的结构变化导致严重的极化而使容量严重损失,而 Ti 取代的正极材料具有长循环寿命和高能量。特别是,NaCoTiO 甚至在 100 次循环后仍具有优异的容量保持率(115 mAh g),而 NaCoO 在 4.5V 截止条件下的容量保持率几乎为零(<10 mAh g)。NaCoTiO 还表现出出色的倍率性能,在 1000 mA g 的电流密度下(7.4C)具有 108 mAh g 的比容量。通过缓解 Na/空位有序化来提高钠离子扩散动力学,从而实现高钠离子利用率,我们结合 TEM、原位 XRD 和电化学方法的系统分析来深入研究性能提升的机制。